Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of the adrenocortical stem cell niche: implications for disease

Key Points

  • Fetal adrenal cells are critical for the establishment of the capsular–cortical unit of the adrenal gland; these cells populate the mesenchymal capsule to become stem cells for the underlying adult (definitive) cortex

  • The adrenal capsular and subcapsular cell populations have a crucial role in gland maintenance; paracrine signals between the capsule and the cortex coordinate normal homeostasis by regulating capsular and subcapsular cellular lineages

  • Genetic defects in signalling pathways that regulate adrenocortical stem and progenitor cells contribute to diseases across the spectrum of adrenal failure and neoplasia

Abstract

Stem cells are endowed with the potential for self-renewal and multipotency. Pluripotent embryonic stem cells have an early role in the formation of the three germ layers (ectoderm, mesoderm and endoderm), whereas adult tissue stem cells and progenitor cells are critical mediators of organ homeostasis. The adrenal cortex is an exceptionally dynamic endocrine organ that is homeostatically maintained by paracrine and endocrine signals throughout postnatal life. In the past decade, much has been learned about the stem and progenitor cells of the adrenal cortex and the multiple roles that these cell populations have in normal development and homeostasis of the adrenal gland and in adrenal diseases. In this Review, we discuss the evidence for the presence of adrenocortical stem cells, as well as the various signalling molecules and transcriptional networks that are critical for the embryological establishment and postnatal maintenance of this vital population of cells. The implications of these pathways and cells in the pathophysiology of disease are also addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell lineages in adrenal gland development and homeostasis.
Figure 2: Simplified view of the adrenocortical homeostatic unit.
Figure 3: Paracrine and endocrine signals that act on adrenocortical cells.

Similar content being viewed by others

References

  1. Young, H. E. & Black, A. C. Jr. Adult stem cells. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 276, 75–102 (2004).

    Article  PubMed  Google Scholar 

  2. Alison, M. R. & Islam, S. Attributes of adult stem cells. J. Pathol. 217, 144–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Arnold, J. Ein Beitrag zu der feineren Struktur und dem Chemismus der Nebennieren [German]. Arch. Pathol. Anat. Physiol. Klin. Med. 35, 64–107 (1866).

    Article  Google Scholar 

  4. Mesiano, S. & Jaffe, R. B. Developmental and functional biology of the primate fetal adrenal cortex. Endocr. Rev. 18, 378–403 (1997).

    CAS  PubMed  Google Scholar 

  5. Heikkilä, M. et al. Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production. Endocrinology 143, 4358–4365 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Nishimoto, K. et al. Adrenocortical zonation in humans under normal and pathological conditions. J. Clin. Endocrinol. Metab. 95, 2296–2305 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Mitani, F. et al. A novel cell layer without corticosteroid-synthesizing enzymes in rat adrenal cortex: histochemical detection and possible physiological role. Endocrinology 135, 431–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Bragulla, H., Hirschberg, R. M., Schlotfeldt, U., Stede, M. & Budras, K. D. On the structure of the adrenal gland of the common seal (Phoca vitulina vitulina). Anat. Histol. Embryol. 33, 263–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Ingle, D. & Higgins, G. Autotransplantation and regeneration of the adrenal gland. Endocrinology 22, 458–464 (1938).

    Article  Google Scholar 

  10. Thomas, M., Northrup, S. R. & Hornsby, P. J. Adrenocortical tissue formed by transplantation of normal clones of bovine adrenocortical cells in scid mice replaces the essential functions of the animals' adrenal glands. Nat. Med. 3, 978–983 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Thomas, M. & Hornsby, P. J. Transplantation of primary bovine adrenocortical cells into scid mice. Mol. Cell. Endocrinol. 153, 125–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Bertholet, J. Y. Proliferative activity and cell migration in the adrenal cortex of fetal and neonatal rats: an autoradiographic study. J. Endocrinol. 87, 1–9 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Zajicek, G., Ariel, I. & Arber, N. The streaming adrenal cortex: direct evidence of centripetal migration of adrenocytes by estimation of cell turnover rate. J. Endocrinol. 111, 477–482 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. McNicol, A. M. & Duffy, A. E. A study of cell migration in the adrenal cortex of the rat using bromodeoxyuridine. Cell Tissue Kinet. 20, 519–526 (1987).

    CAS  PubMed  Google Scholar 

  15. Chang, S. P. et al. Cell proliferation, movement and differentiation during maintenance of the adult mouse adrenal cortex. PLoS ONE 8, e81865 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Morley, S. D. et al. Variegated expression of a mouse steroid 21-hydroxylase/β-galactosidase transgene suggests centripetal migration of adrenocortical cells. Mol. Endocrinol. 10, 585–598 (1996).

    CAS  PubMed  Google Scholar 

  17. Hu, M. et al. Tissue-specific, hormonal, and developmental regulation of SCC–LacZ expression in transgenic mice leads to adrenocortical zone characterization. Endocrinology 140, 5609–5618 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Iannaccone, P., Morley, S., Skimina, T., Mullins, J. & Landini, G. Cord-like mosaic patches in the adrenal cortex are fractal: implications for growth and development. FASEB J. 17, 41–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Salmon, T. N. & Zwemer, R. L. A study of the life history of cortico-adrenal gland cells of the rat by means of trypan blue injections. Anat. Rec. 80, 421–429 (1941).

    Article  Google Scholar 

  20. Uotila, U. U. The early embryological development of the fetal and permanent adrenal cortex in man. Anat. Rec. 76, 183–203 (1940).

    Article  Google Scholar 

  21. Luo, X., Ikeda, Y. & Parker, K. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Hatano, O., Takakusu, A., Nomura, M. & Morohashi, K. Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells 1, 663–671 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Anderson, D., Carnahan, J., Michelsohn, A. & Patterson, P. Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J. Neurosci. 11, 3507–3519 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitani, F., Mukai, K., Miyamoto, H., Suematsu, M. & Ishimura, Y. Development of functional zonation in the rat adrenal cortex. Endocrinology 140, 3342–3353 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Conley, A. J., Bernstein, R. M. & Nguyen, A. D. Adrenarche in nonhuman primates: the evidence for it and the need to redefine it. J. Endocrinol. 214, 121–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Schnabel, C. A., Selleri, L. & Cleary, M. L. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis 37, 123–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Moore, A. W., McInnes, L., Kreidberg, J., Hastie, N. D. & Schedl, A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126, 1845–1857 (1999).

    CAS  PubMed  Google Scholar 

  29. Bamforth, S. D. et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat. Genet. 29, 469–474 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Shinoda, K. et al. Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-F1 disrupted mice. Dev. Dyn. 204, 22–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Ingraham, H. A. et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev. 8, 2302–2312 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Morohashi, K. et al. Structural and functional abnormalities in the spleen of an mFtz-F1 gene-disrupted mouse. Blood 93, 1586–1594 (1999).

    CAS  PubMed  Google Scholar 

  33. Zubair, M., Ishihara, S., Oka, S., Okumura, K. & Morohashi, K. Two-step regulation of Ad4BP/SF-1 gene transcription during fetal adrenal development: initiation by a Hox–Pbx1–Prep1 complex and maintenance via autoregulation by Ad4BP/SF-1. Mol. Cell. Biol. 26, 4111–4121 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zubair, M., Parker, K. & Morohashi, K. Developmental links between the fetal and adult zones of the adrenal cortex revealed by lineage tracing. Mol. Cell. Biol. 28, 7030–7040 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Briscoe, J. & Thérond, P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell. Biol. 14, 418–431 (2013).

    Article  CAS  Google Scholar 

  36. King, P., Paul, A. & Laufer, E. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. Proc. Natl Acad. Sci. USA 106, 21185–21190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ching, S. & Vilain, E. Targeted disruption of Sonic Hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. Genesis 47, 628–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Huang, C. C., Miyagawa, S., Matsumaru, D., Parker, K. L. & Yao, H. H. Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog. Endocrinology 151, 1119–1128 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wood, M. A. et al. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development 140, 4522–4532 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell. Biol. 10, 207–217 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bandiera, R. et al. WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev. Cell 27, 5–18 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wood, M. A. & Hammer, G. Adrenocortical stem and progenitor cells: unifying model of two proposed origins. Mol. Cell. Endocrinol. 336, 206–212 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Gottschau, M. Struktur und embryonale Entwicklung der Nebennieren bei Säugetieren. Archiv fur Anatomie und Physiologie, 412–458 (1883).

  44. Deane, H. W. & Greep, R. O. A morphological and histochemical study of the rat's adrenal cortex after hypophysectomy, with comments on the liver. Am. J. Anat. 79, 117–45 (1946).

    Article  CAS  PubMed  Google Scholar 

  45. Freedman, B. D. et al. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 26, 666–673 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lala, D. S., Rice, D. A. & Parker, K. L. Steroidogenic factor 1, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol. Endocrinol. 6, 1249–1258 (1992).

    CAS  PubMed  Google Scholar 

  47. Honda, S. et al. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J. Biol. Chem. 268, 7494–502 (1993).

    CAS  PubMed  Google Scholar 

  48. Ikeda, Y., Shen, W., Ingraham, H. & Parker, K. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol. Endocrinol. 8, 654–662 (1994).

    CAS  PubMed  Google Scholar 

  49. Bland, M. et al. Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response. Proc. Natl Acad. Sci. USA 97, 14488–14493 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beuschlein, F. et al. Steroidogenic factor-1 is essential for compensatory adrenal growth following unilateral adrenalectomy. Endocrinology 143, 3122–3135 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Achermann, J. C., Ito, M., Ito, M., Hindmarsh, P. C. & Jameson, J. L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 22, 125–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Achermann, J. C. et al. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J. Clin. Endocrinol. Metab. 87, 1829–1833 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Zubair, M., Oka, S., Parker, K. & Morohashi, K. Transgenic expression of Ad4BP/SF-1 in fetal adrenal progenitor cells leads to ectopic adrenal formation. Mol. Endocrinol. 23, 1657–1667 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Crawford, P., Sadovsky, Y. & Milbrandt, J. Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage. Mol. Cell. Biol. 17, 3997–4006 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gondo, S. et al. SF-1/Ad4BP transforms primary long-term cultured bone marrow cells into ACTH-responsive steroidogenic cells. Genes Cells 9, 1239–1247 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Doghman, M. et al. Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol. Endocrinol. 21, 2968–2987 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Figueiredo, B. et al. Amplification of the steroidogenic factor 1 gene in childhood adrenocortical tumors. J. Clin. Endocrinol. Metab. 90, 615–619 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Pianovski, M. et al. SF-1 overexpression in childhood adrenocortical tumours. Eur. J. Cancer 42, 1040–1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Almeida, M. Q. et al. Steroidogenic factor 1 overexpression and gene amplification are more frequent in adrenocortical tumors from children than from adults. J. Clin. Endocrinol. Metab. 95, 1458–1462 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Sbiera, S. et al. High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors. J. Clin. Endocrinol. Metab. 95, E161–E171 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, A. et al. In search of adrenocortical stem and progenitor cells. Endocr. Rev. 30, 241–263 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hoivik, E. A., Lewis, A. l., Aumo, L. & Bakke, M. Molecular aspects of steroidogenic factor 1 (SF-1). Mol. Cell. Endocrinol. 315, 27–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Zanaria, E. et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372, 635–641 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Ito, M., Yu, R. & Jameson, J. L. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol. Cell. Biol. 17, 1476–1483 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Niakan, K. K. & McCabe, E. R. DAX1 origin, function, and novel role. Mol. Genet. Metab. 86, 70–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Crawford, P. A., Dorn, C., Sadovsky, Y. & Milbrandt, J. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol. Cell. Biol. 18, 2949–2956 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Altincicek, B. et al. Interaction of the corepressor Alien with DAX-1 is abrogated by mutations of DAX-1 involved in adrenal hypoplasia congenita. J. Biol. Chem. 275, 7662–7667 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Xu, B. et al. Dax-1 and steroid receptor RNA activator (SRA) function as transcriptional coactivators for steroidogenic factor 1 in steroidogenesis. Mol. Cell. Biol. 29, 1719–1734 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Babu, P. et al. Interaction between Dax-1 and steroidogenic factor-1 in vivo: increased adrenal responsiveness to ACTH in the absence of Dax-1. Endocrinology 143, 665–673 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Zazopoulos, E., Lalli, E., Stocco, D. M. & Sassone-Corsi, P. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature 390, 311–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Niakan, K. K. et al. Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis. Mol. Genet. Metab. 88, 261–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Khalfallah, O., Rouleau, M., Barbry, P., Bardoni, B. & Lalli, E. Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. Stem Cells 27, 1529–1537 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Kelly, V., Xu, B., Kuick, R., Koenig, R. & Hammer, G. Dax1 up-regulates Oct4 expression in mouse embryonic stem cells via LRH-1 and SRA. Mol. Endocrinol. 24, 2281–2291 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kelly, V. R. & Hammer, G. D. LRH-1 and Nanog regulate Dax1 transcription in mouse embryonic stem cells. Mol. Cell. Endocrinol. 332, 116–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Scheys, J., Heaton, J. & Hammer, G. Evidence of adrenal failure in aging Dax1-deficient mice. Endocrinology 152, 3430–3439 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Muscatelli, F. et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Peter, M., Viemann, M., Partsch, C. J. & Sippell, W. G. Congenital adrenal hypoplasia: clinical spectrum, experience with hormonal diagnosis, and report on new point mutations of the DAX-1 gene. J. Clin. Endocrinol. Metab. 83, 2666–2674 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Landau, Z. et al. Clinical and genetic heterogeneity of congenital adrenal hypoplasia due to NR0B1 gene mutations. Clin. Endocrinol. 72, 448–454 (2010).

    Article  CAS  Google Scholar 

  79. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Nusse, R. Wnt signaling. Cold Spring Harb. Perspect. Biol. 4, a011163 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kim, A. et al. Targeted disruption of β-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135, 2593–2602 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Mizusaki, H. et al. Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1) gene transcription is regulated by Wnt4 in the female developing gonad. Mol. Endocrinol. 17, 507–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Berthon, A. et al. Constitutive β-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum. Mol. Genet. 19, 1561–1576 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Heaton, J. et al. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. Am. J. Pathol. 181, 1017–1033 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Berthon, A. et al. WNT/β-catenin signalling is activated in aldosterone producing adenomas and controls aldosterone production. Hum. Mol. Genet. 23, 889–905 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Walczak, E. M. et al. Wnt signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms. Mol. Endocrinol. 28, 1471–1486 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gaujoux, S. et al. Inactivation of the APC gene is constant in adrenocortical tumors from patients with familial adenomatous polyposis but not frequent in sporadic adrenocortical cancers. Clin. Cancer Res. 16, 5133–5141 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Tissier, F. et al. Mutations of β-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 65, 7622–7627 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Assie, G. et al. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46, 607–612 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Park, J. S., Valerius, M. T. & McMahon, A. P. Wnt/β-catenin signaling regulates nephron induction during mouse kidney development. Development 134, 2533–2539 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Boyer, A. et al. CTNNB1 signaling in Sertoli cells downregulates spermatogonial stem cell activity via WNT4. PLoS ONE 7, e29764 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Jeays-Ward, K. et al. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130, 3663–3670 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 82, 39–47 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kang, S., Graham, J. M., Olney, A. H. & Biesecker, L. G. GLI3 frameshift mutations cause autosomal dominant Pallister–Hall syndrome. Nat. Genet. 15, 266–268 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Hall, J. G. et al. Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly—a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am. J. Med. Genet. 7, 47–74 (1980).

    Article  CAS  PubMed  Google Scholar 

  96. Böse, J., Grotewold, L. & Rüther, U. Pallister–Hall syndrome phenotype in mice mutant for Gli3. Hum. Mol. Genet. 11, 1129–1135 (2002).

    Article  PubMed  Google Scholar 

  97. Laufer, E., Kesper, D., Vortkamp, A. & King, P. Sonic hedgehog signaling during adrenal development. Mol. Cell. Endocrinol. 351, 19–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Lanner, F. & Rossant, J. The role of FGF/Erk signaling in pluripotent cells. Development 137, 3351–3360 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Guasti, L., Candy Sze, W. C., McKay, T., Grose, R. & King, P. J. FGF signalling through Fgfr2 isoform IIIb regulates adrenal cortex development. Mol. Cell. Endocrinol. 371, 182–188 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ornitz, D. M. et al. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292–15297 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, Y. et al. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc. Natl Acad. Sci. USA 104, 16558–16563 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Revest, J. M. et al. Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev. Biol. 231, 47–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Hajihosseini, M. K., Wilson, S., De Moerlooze, L. & Dickson, C. A splicing switch and gain-of-function mutation in FgfR2-IIIc hemizygotes causes Apert/Pfeiffer-syndrome-like phenotypes. Proc. Natl Acad. Sci. USA 98, 3855–3860 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gospodarowicz, D. & Handley, H. H. Stimulation of division of Y1 adrenal cells by a growth factor isolated from bovine pituitary glands. Endocrinology 97, 102–107 (1975).

    Article  CAS  PubMed  Google Scholar 

  105. Gospodarowicz, D., Ill, C. R., Hornsby, P. J. & Gill, G. N. Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect of epidermal growth factor. Endocrinology 100, 1080–1089 (1977).

    Article  CAS  PubMed  Google Scholar 

  106. Basile, D. P. & Holzwarth, M. A. Basic fibroblast growth factor may mediate proliferation in the compensatory adrenal growth response. Am. J. Physiol. 265, R1253–R1261 (1993).

    CAS  PubMed  Google Scholar 

  107. Basile, D. P. & Holzwarth, M. A. Basic fibroblast growth factor receptor in the rat adrenal cortex: effects of suramin and unilateral adrenalectomy on receptor numbers. Endocrinology 134, 2482–2489 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. de Fraipont, F. et al. Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy. J. Clin. Endocrinol. Metab. 90, 1819–1829 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. West, A. N. et al. Gene expression profiling of childhood adrenocortical tumors. Cancer Res. 67, 600–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Brito, L. P. et al. The role of fibroblast growth factor receptor 4 overexpression and gene amplification as prognostic markers in pediatric and adult adrenocortical tumors. Endocr. Relat. Cancer 19, L11–L13 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Watabe, T. & Miyazono, K. Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res. 19, 103–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Spencer, S. J., Rabinovici, J., Mesiano, S., Goldsmith, P. C. & Jaffe, R. B. Activin and inhibin in the human adrenal gland. Regulation and differential effects in fetal and adult cells. J. Clin. Invest. 90, 142–149 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Suzuki, J. et al. Novel action of activin and bone morphogenetic protein in regulating aldosterone production by human adrenocortical cells. Endocrinology 145, 639–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Hofland, J. & de Jong, F. H. Inhibins and activins: their roles in the adrenal gland and the development of adrenocortical tumors. Mol. Cell. Endocrinol. 359, 92–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Matzuk, M. M. et al. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc. Natl Acad. Sci. USA 91, 8817–8821 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Beuschlein, F. et al. Activin induces x-zone apoptosis that inhibits luteinizing hormone-dependent adrenocortical tumor formation in inhibin-deficient mice. Mol. Cell. Biol. 23, 3951–3964 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Looyenga, B. & Hammer, G. Origin and identity of adrenocortical tumors in inhibin knockout mice: implications for cellular plasticity in the adrenal cortex. Mol. Endocrinol. 20, 2848–2863 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Alevizaki, M., Saltiki, K., Mantzou, E., Anastasiou, E. & Huhtaniemi, I. The adrenal gland may be a target of LH action in postmenopausal women. Eur. J. Endocrinol. 154, 875–881 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Fottner, C., Niederle, I. M. & Weber, M. J. in Adrenocortical Carcinoma (eds Hammer, G. & Else, T.) 235–262 (Springer, 2011).

    Google Scholar 

  120. Mesiano, S., Mellon, S. H. & Jaffe, R. B. Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland. J. Clin. Endocrinol. Metab. 76, 968–976 (1993).

    CAS  PubMed  Google Scholar 

  121. Penhoat, A., Chatelain, P. G., Jaillard, C. & Saez, J. M. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function. Endocrinology 122, 2518–2526 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Belgorosky, A., Baquedano, M. S., Guercio, G. & Rivarola, M. A. Expression of the IGF and the aromatase/estrogen receptor systems in human adrenal tissues from early infancy to late puberty: implications for the development of adrenarche. Rev. Endocr. Metab. Disord. 10, 51–61 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Pitetti, J. L. et al. Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet. 9, e1003160 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Penhoat, A., Rainey, W. E., Viard, I. & Saez, J. M. Regulation of adrenal cell-differentiated functions by growth factors. Horm. Res. 42, 39–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Weksberg, R., Shuman, C. & Smith, A. C. Beckwith–Wiedemann syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 137C, 12–23 (2005).

    Article  PubMed  Google Scholar 

  126. Beckwith, J. Extreme cytomegaly of the adrenal fetal cortex, omphalocele, hyperplasia of kidneys and pancreas, and Leydig-cell hyperplasia: another syndrome? Presented at the 11th Annual Meeting of the Western Society for Pediatric Research, Los Angeles, USA (1963).

  127. Lapunzina, P. Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am. J. Med. Genet. C Semin. Med. Genet. 137C, 53–71 (2005).

    Article  PubMed  Google Scholar 

  128. Giordano, T. J. et al. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin. Cancer Res. 15, 668–676 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. de Reyniès, A. et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J. Clin. Oncol. 27, 1108–1115 (2009).

    Article  PubMed  Google Scholar 

  130. Assié, G., Jouinot, A. & Bertherat, J. The 'omics' of adrenocortical tumours for personalized medicine. Nat. Rev. Endocrinol. 10, 215–228 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Drelon, C. et al. Analysis of the role of Igf2 in adrenal tumour development in transgenic mouse models. PLoS ONE 7, e44171 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Arboleda, V. A. et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat. Genet. 44, 788–792 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Hamajima, N., Johmura, Y., Suzuki, S., Nakanishi, M. & Saitoh, S. Increased protein stability of CDKN1C causes a gain-of-function phenotype in patients with IMAGe syndrome. PLoS ONE 8, e75137 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Hattangady, N., Olala, L., Bollag, W. & Rainey, W. Acute and chronic regulation of aldosterone production. Mol. Cell. Endocrinol. 350, 151–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Miller, W. & Auchus, R. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Oliverio, M. I. et al. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc. Natl Acad. Sci. USA 95, 15496–15501 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chida, D. et al. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc. Natl Acad. Sci. USA 104, 18205–18210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Karpac, J. et al. Development, maintenance, and function of the adrenal gland in early postnatal proopiomelanocortin-null mutant mice. Endocrinology 146, 2555–2562 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Dallman, M. F. Control of adrenocortical growth in vivo. Endocr. Res. 10, 213–242 (1984).

    Article  CAS  PubMed  Google Scholar 

  140. Mitani, F., Mukai, K., Miyamoto, H., Suematsu, M. & Ishimura, Y. The undifferentiated cell zone is a stem cell zone in adult rat adrenal cortex. Biochim. Biophys. Acta 1619, 317–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Nishimoto, K., Harris, R. B., Rainey, W. E. & Seki, T. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. Endocrinology 155, 1363–1372 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Ferreira, J. G., Cruz, C. D., Neves, D. & Pignatelli, D. Increased extracellular signal regulated kinases phosphorylation in the adrenal gland in response to chronic ACTH treatment. J. Endocrinol. 192, 647–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Yates, R. et al. Adrenocortical development, maintenance, and disease. Curr. Top. Dev. Biol. 106, 239–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Voutilainen, R. & Miller, W. L. Coordinate tropic hormone regulation of mRNAs for insulin-like growth factor II and the cholesterol side-chain-cleavage enzyme, P450scc [corrected], in human steroidogenic tissues. Proc. Natl Acad. Sci. USA 84, 1590–1594 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mesiano, S., Mellon, S. H., Gospodarowicz, D., Di Blasio, A. M. & Jaffe, R. B. Basic fibroblast growth factor expression is regulated by corticotropin in the human fetal adrenal: a model for adrenal growth regulation. Proc. Natl Acad. Sci. USA 88, 5428–5432 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gummow, B., Scheys, J., Cancelli, V. & Hammer, G. Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex. Mol. Endocrinol. 20, 2711–2723 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Almeida, M. Q. et al. Activation of cyclic AMP signaling leads to different pathway alterations in lesions of the adrenal cortex caused by germline PRKAR1A defects versus those due to somatic GNAS mutations. J. Clin. Endocrinol. Metab. 97, E687–E693 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Sidhu, A., Debelenko, L. & Misra, V. K. Infantile adrenocortical tumor with an activating GNAS1 mutation. J. Clin. Endocrinol. Metab. 98, E115–E118 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Goh, G. et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat. Genet. 46, 613–617 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Fragoso, M. C. et al. Cushing's syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J. Clin. Endocrinol. Metab. 88, 2147–2151 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).

    Article  CAS  PubMed  Google Scholar 

  152. Beuschlein, F. et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome. N. Engl. J. Med. 370, 1019–1028 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Cao, Y. et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome. Science 344, 913–917 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Sato, Y. et al. Recurrent somatic mutations underlie corticotropin-independent Cushing's syndrome. Science 344, 917–920 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Groussin, L. et al. Mutations of the PRKAR1A gene in Cushing's syndrome due to sporadic primary pigmented nodular adrenocortical disease. J. Clin. Endocrinol. Metab. 87, 4324–4329 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nat. Genet. 26, 89–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Griffin, K. J. et al. Down-regulation of regulatory subunit type 1A of protein kinase A leads to endocrine and other tumors. Cancer Res. 64, 8811–8815 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Griffin, K. J. et al. A transgenic mouse bearing an antisense construct of regulatory subunit type 1A of protein kinase A develops endocrine and other tumours: comparison with Carney complex and other PRKAR1A induced lesions. J. Med. Genet. 41, 923–931 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Almeida, M. Q. et al. Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/− or Rb1+/− backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling. Hum. Mol. Genet. 19, 1387–1398 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Sahut-Barnola, I. et al. Cushing's syndrome and fetal features resurgence in adrenal cortex-specific Prkar1a knockout mice. PLoS Genet. 6, e1000980 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Horvath, A. et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat. Genet. 38, 794–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Horvath, A. et al. A cAMP-specific phosphodiesterase (PDE8B) that is mutated in adrenal hyperplasia is expressed widely in human and mouse tissues: a novel PDE8B isoform in human adrenal cortex. Eur. J. Hum. Genet. 16, 1245–1253 (2008).

    Article  PubMed  CAS  Google Scholar 

  163. Vezzosi, D. et al. Phosphodiesterase 11A (PDE11A) gene defects in patients with ACTH-independent macronodular adrenal hyperplasia (AIMAH): functional variants may contribute to genetic susceptibility of bilateral adrenal tumors. J. Clin. Endocrinol. Metab. 97, E2063–E2069 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Libe, R. et al. Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clin. Cancer Res. 14, 4016–4024 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Tullio-Pelet, A. et al. Mutant WD-repeat protein in triple-A syndrome. Nat. Genet. 26, 332–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Beamer, W. G. et al. Adrenocortical dysplasia: a mouse model system for adrenocortical insufficiency. J. Endocrinol. 141, 33–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  167. Kume, T., Deng, K. & Hogan, B. L. Minimal phenotype of mice homozygous for a null mutation in the forkhead/winged helix gene, Mf2. Mol. Cell. Biol. 20, 1419–1425 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Assié, G. et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome. N. Engl. J. Med. 369, 2105–2114 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Beuschlein, F. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat. Genet. 45, 440 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Scholl, U. I. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat. Genet. 45, 1050–1054 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Choi, M. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331, 768–772 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Skogseid, B. et al. Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 75, 76–81 (1992).

    CAS  PubMed  Google Scholar 

  173. Kjellman, M. et al. Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. J. Clin. Endocrinol. Metab. 84, 730–735 (1999).

    CAS  PubMed  Google Scholar 

  174. Karamurzin, Y. et al. Unusual DNA mismatch repair-deficient tumors in Lynch syndrome: a report of new cases and review of the literature. Hum. Pathol. 43, 1677–1687 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Ragazzon, B. et al. Mass-array screening of frequent mutations in cancers reveals RB1 alterations in aggressive adrenocortical carcinomas. Eur. J. Endocrinol. 170, 385–391 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Li, F. P. et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 48, 5358–5362 (1988).

    CAS  PubMed  Google Scholar 

  177. Hisada, M., Garber, J. E., Fung, C. Y., Fraumeni, J. F. Jr & Li, F. P. Multiple primary cancers in families with Li–Fraumeni syndrome. J. Natl Cancer Inst. 90, 606–611 (1998).

    Article  CAS  PubMed  Google Scholar 

  178. Bougeard, G. et al. Molecular basis of the Li–Fraumeni syndrome: an update from the French LFS families. J. Med. Genet. 45, 535–538 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Heaton (University of Michigan, Ann Arbor, MI, USA) for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.M.W. researched the data for the article and wrote the article. E.M.W. and G.D.H. contributed equally to discussion of the content of the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Gary D. Hammer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walczak, E., Hammer, G. Regulation of the adrenocortical stem cell niche: implications for disease. Nat Rev Endocrinol 11, 14–28 (2015). https://doi.org/10.1038/nrendo.2014.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing