Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs—mediators of myometrial contractility during pregnancy and labour

Abstract

The maintenance of myometrial quiescence and initiation of contractility, which lead to parturition at term and preterm, involve a shifting equilibrium between anti-inflammatory and proinflammatory signalling pathways. Progesterone (P4), acting through the progesterone receptor (PR), has an essential and multifaceted role in the maintenance of myometrial quiescence. This effect of P4–PR signalling is mediated, in part, by its anti-inflammatory actions and capacity to repress the expression of genes that encode proinflammatory cytokines, such as IL-1 and IL-6, and contraction-associated proteins, such as OXTR, GJA1 and PTGS2. By contrast, increased expression of genes that ultimately lead to parturition is mediated by enhanced inflammatory and estradiol-17β (E2) and estrogen receptor α signalling, which reduce PR function, thus further intensifying the inflammatory response. To obtain a more complete understanding of the molecular events that underlie the transition of the pregnant myometrium from a refractory to a contractile state, the roles of microRNAs, their targets, and their transcriptional and hormonal regulation have been investigated. This article reviews the actions of the miR-200 family and their P4-regulated targets—the transcription factors ZEB1, ZEB2 and STAT5B—in the pregnant myometrium, as well as the role of miR-199a-3p and miR-214 and their mutual target PTGS2. The central role of ZEB1 as the mediator of the opposing actions of P4 and E2 on myometrial contractility will be highlighted.

Key Points

  • Progesterone (P4), acting via the progesterone receptor (PR), maintains uterine quiescence in part by increasing the expression of ZEB1 and ZEB2, which inhibit the contraction-associated genes OXTR and GJA1

  • The initiation of myometrial contractility is mediated by an increased inflammatory response, an associated increase in 17β-estradiol (E2) and estrogen receptor (ERα) signalling and a decline in PR function

  • Near term, the myometrial inflammatory response is promoted by physical and hormonal signals from mother and fetus; in preterm labour, the increased inflammatory response is commonly induced by a bacterial infection

  • Expression of the miR-200 family increases in mouse and human myometrium near term and suppresses ZEB1 and ZEB2 levels, which results in the de-repression of contractile genes and increased myometrial contractility

  • Increased miR-200 expression near term also inhibits STAT5B; decreased STAT5B levels de-repress 20α-hydroxysteroid dehydrogenase and increase myometrial metabolism of P4

  • Increased E2–ERα signalling and the decline in PR function near term mediate decreased expression of ZEB1, and of miR-199a-3p and miR-214, which contributes to the induction of PTGS2

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P4–PR regulation of myometrial quiescence.
Figure 2: The increased inflammatory response associated with parturition.
Figure 3: Chromosomal location and seed sequences of members of the miR-200 family and the miR-199a/214 cluster.
Figure 4: Schematic representation of the pivotal role of ZEB1 and ZEB2 during pregnancy and labour.

Similar content being viewed by others

References

  1. Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172 (2012).

    PubMed  Google Scholar 

  2. Peltier, M. R. et al. Amniotic fluid and maternal race influence responsiveness of fetal membranes to bacteria. J. Reprod. Immunol. 96, 68–78 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mendelson, C. R. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol. Endocrinol. 23, 947–954 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shynlova, O., Lee, Y. H., Srikhajon, K. & Lye, S. J. Physiologic uterine inflammation and labor onset: integration of endocrine and mechanical signals. Reprod. Sci. 20, 154–167 (2013).

    PubMed  Google Scholar 

  5. van Rooij, E., Liu, N. & Olson, E. N. MicroRNAs flex their muscles. Trends Genet. 24, 159–166 (2008).

    CAS  PubMed  Google Scholar 

  6. Turner, M. L., Schnorfeil, F. M. & Brocker, T. MicroRNAs regulate dendritic cell differentiation and function. J. Immunol. 187, 3911–3917 (2011).

    CAS  PubMed  Google Scholar 

  7. Braun, T. & Gautel, M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell Biol. 12, 349–361 (2011).

    CAS  PubMed  Google Scholar 

  8. Garzon, R., Calin, G. A. & Croce, C. M. MicroRNAs in cancer. Annu. Rev. Med. 60, 167–179 (2009).

    CAS  PubMed  Google Scholar 

  9. Mendell, J. T. miRiad roles for the miR-17-92 cluster in development and disease. Cell 133, 217–222 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Boldin, M. P. & Baltimore, D. MicroRNAs, new effectors and regulators of NF-κB. Immunol. Rev. 246, 205–220 (2012).

    PubMed  Google Scholar 

  11. Hawkins, S. M., Buchold, G. M. & Matzuk, M. M. Minireview: The roles of small RNA pathways in reproductive medicine. Mol. Endocrinol. 25, 1257–1279 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakrabarty, A. et al. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc. Natl Acad. Sci. USA 104, 15144–15149 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu, T. Y., Lin, C. T. & Tang, P. C. Steroid hormone-regulated let-7b mediates cell proliferation and basigin expression in the mouse endometrium. J. Reprod. Dev. 57, 627–635 (2011).

    CAS  PubMed  Google Scholar 

  14. Hawkins, S. M. et al. Dysregulation of uterine signaling pathways in progesterone receptor-Cre knockout of dicer. Mol. Endocrinol. 26, 1552–1566 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, J. L. et al. Combined analysis of microRNome and 3′-UTRome reveals a species-specific regulation of progesterone receptor expression in the endometrium of rhesus monkey. J. Biol. Chem. 287, 13899–13910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, R. et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod. Biol. Endocrinol. 9, 29 (2011).

    PubMed  PubMed Central  Google Scholar 

  17. Su, R. W. et al. The integrative analysis of microRNA and mRNA expression in mouse uterus under delayed implantation and activation. PLoS ONE 5, e15513 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Aghajanova, L. & Giudice, L. C. Molecular evidence for differences in endometrium in severe versus mild endometriosis. Reprod. Sci. 18, 229–251 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia, H. F. et al. Temporal and spatial regulation of miR-320 in the uterus during embryo implantation in the rat. Int. J. Mol. Sci. 11, 719–730 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xia, H. F. et al. Temporal and spatial regulation of let-7a in the uterus during embryo implantation in the rat. J. Reprod. Dev. 56, 73–78 (2010).

    CAS  PubMed  Google Scholar 

  21. Hassan, S. S. et al. MicroRNA expression profiling of the human uterine cervix after term labor and delivery. Am. J. Obstet. Gynecol. 202, 80 e1–e8 (2010).

    Google Scholar 

  22. Nagaraja, A. K. et al. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol. Endocrinol. 22, 2336–2352 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian, K. et al. Hsa-miR-222 is involved in differentiation of endometrial stromal cells in vitro. Endocrinology 150, 4734–4743 (2009).

    CAS  PubMed  Google Scholar 

  24. Gonzalez, G. & Behringer, R. R. Dicer is required for female reproductive tract development and fertility in the mouse. Mol. Reprod. Dev. 76, 678–688 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Montenegro, D. et al. Differential expression of microRNAs with progression of gestation and inflammation in the human chorioamniotic membranes. Am. J. Obstet. Gynecol. 197, 289 e1–e6 (2007).

    Google Scholar 

  26. Montenegro, D. et al. Expression patterns of microRNAs in the chorioamniotic membranes: a role for microRNAs in human pregnancy and parturition. J. Pathol. 217, 113–121 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hong, X., Luense, L. J., McGinnis, L. K., Nothnick, W. B. & Christenson, L. K. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 149, 6207–6212 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu, S. J. et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. J. Biol. Chem. 283, 23473–23484 (2008).

    CAS  PubMed  Google Scholar 

  29. Renthal, N. E. et al. miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc. Natl Acad. Sci. USA 107, 20828–20833 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Williams, K. C., Renthal, N. E., Condon, J. C., Gerard, R. D. & Mendelson, C. R. MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc. Natl Acad. Sci. USA 109, 7529–7534 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Williams, K. C., Renthal, N. E., Gerard, R. D. & Mendelson, C. R. The microRNA (miR)-199a/214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor. Mol. Endocrinol. 26, 1857–1867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hardy, D. B., Janowski, B. A., Corey, D. R. & Mendelson, C. R. Progesterone receptor (PR) plays a major anti-inflammatory role in human myometrial cells by antagonism of NF-κB activation of cyclooxygenase 2 expression. Mol. Endocrinol. 20, 2724–2733 (2006).

    CAS  PubMed  Google Scholar 

  33. Loudon, J. A., Elliott, C. L., Hills, F. & Bennett, P. R. Progesterone represses interleukin-8 and cyclo-oxygenase-2 in human lower segment fibroblast cells and amnion epithelial cells. Biol. Reprod. 69, 331–337 (2003).

    CAS  PubMed  Google Scholar 

  34. Dong, X. et al. p54nrb is a transcriptional corepressor of the progesterone receptor that modulates transcription of the labor-associated gene, connexin 43 (Gja1). Mol. Endocrinol. 23, 1147–1160 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shynlova, O., Tsui, P., Dorogin, A. & Lye, S. J. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J. Immunol. 181, 1470–1479 (2008).

    CAS  PubMed  Google Scholar 

  36. Cox, S. M., Casey, M. L. & MacDonald, P. C. Accumulation of interleukin-1β and interleukin-6 in amniotic fluid: a sequela of labour at term and preterm. Hum. Reprod. Update 3, 517–527 (1997).

    CAS  PubMed  Google Scholar 

  37. Thomson, A. J. et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum. Reprod. 14, 229–236 (1999).

    CAS  PubMed  Google Scholar 

  38. Condon, J. C., Jeyasuria, P., Faust, J. M. & Mendelson, C. R. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc. Natl Acad. Sci. USA 101, 4978–4983 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Osman, I. et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol. Hum. Reprod. 9, 41–45 (2003).

    CAS  PubMed  Google Scholar 

  40. Rauk, P. N. & Chiao, J. P. Interleukin-1 stimulates human uterine prostaglandin production through induction of cyclooxygenase-2 expression. Am. J. Reprod. Immunol. 43, 152–159 (2000).

    CAS  PubMed  Google Scholar 

  41. Sooranna, S. R. et al. Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor in human myometrial cells. Mol. Hum. Reprod. 10, 109–113 (2004).

    CAS  PubMed  Google Scholar 

  42. Montalbano, A. P., Hawgood, S. & Mendelson, C. R. Mice deficient in surfactant protein A (SP-A) and SP-D or in TLR2 manifest delayed parturition and decreased expression of inflammatory and contractile genes. Endocrinology 154, 483–498 (2013).

    CAS  PubMed  Google Scholar 

  43. Shaw, G. & Renfree, M. B. Fetal control of parturition in marsupials. Reprod. Fertil. Dev. 13, 653–659 (2001).

    CAS  PubMed  Google Scholar 

  44. Challis, J. R. G., Matthews, S. G., Gibb, W. & Lye, S. J. Endocrine and paracrine regulation of birth at term and preterm. Endocr. Rev. 21, 514–550 (2000).

    CAS  PubMed  Google Scholar 

  45. Mitchell, M. D., MacDonald, P. C. & Casey, M. L. Stimulation of prostaglandin E2 synthesis in human amnion cells maintained in monolayer culture by a substance(s) in amniotic fluid. Prostaglandins Leukot. Med. 15, 399–407 (1984).

    CAS  PubMed  Google Scholar 

  46. Romero, R. et al. The role of inflammation and infection in preterm birth. Semin. Reprod. Med. 25, 21–39 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Condon, J. C., Hardy, D. B., Kovaric, K. & Mendelson, C. R. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-κB may contribute to the onset of labor through inhibition of PR function. Mol. Endocrinol. 20, 764–775 (2006).

    CAS  PubMed  Google Scholar 

  48. Allport, V. C. et al. Human labour is associated with nuclear factor-κB activity which mediates cyclo-oxygenase-2 expression and is involved with the 'functional progesterone withdrawal'. Mol. Hum. Reprod. 7, 581–586 (2001).

    CAS  PubMed  Google Scholar 

  49. Lee, Y. S., Terzidou, V., Lindstrom, T., Johnson, M. & Bennett, P. R. The role of CCAAT/enhancer-binding protein β in the transcriptional regulation of COX-2 in human amnion. Mol. Hum. Reprod. 11, 853–858 (2005).

    CAS  PubMed  Google Scholar 

  50. Elliott, C. L., Allport, V. C., Loudon, J. A., Wu, G. D. & Bennett, P. R. Nuclear factor-κB is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol. Hum. Reprod. 7, 787–790 (2001).

    CAS  PubMed  Google Scholar 

  51. Olson, D. M. The role of prostaglandins in the initiation of parturition. Best Pract. Res. Clin. Obstet. Gynaecol. 17, 717–730 (2003).

    PubMed  Google Scholar 

  52. Chow, L. & Lye, S. J. Expression of the gap junction protein connexin-43 is increased in the human myometrium toward term and with the onset of labor. Am. J. Obstet. Gynecol. 170, 788–795 (1994).

    CAS  PubMed  Google Scholar 

  53. Fuchs, A. R., Fuchs, F., Husslein, P. & Soloff, M. S. Oxytocin receptors in the human uterus during pregnancy and parturition. Am. J. Obstet. Gynecol. 150, 734–741 (1984).

    CAS  PubMed  Google Scholar 

  54. Soloff, M. S., Cook, D. L. Jr, Jeng, Y. J. & Anderson, G. D. In situ analysis of interleukin-1-induced transcription of cox-2 and il-8 in cultured human myometrial cells. Endocrinology 145, 1248–1254 (2004).

    CAS  PubMed  Google Scholar 

  55. Virgo, B. B. & Bellward, G. D. Serum progesterone levels in the pregnant and postpartum laboratory mouse. Endocrinology 95, 1486–1490 (1974).

    CAS  PubMed  Google Scholar 

  56. Frydman, R. et al. Labor induction in women at term with mifepristone (RU 486): a double-blind, randomized, placebo-controlled study. Obstet. Gynecol. 80, 972–975 (1992).

    CAS  PubMed  Google Scholar 

  57. Elliott, C. L., Brennand, J. E. & Calder, A. A. The effects of mifepristone on cervical ripening and labor induction in primigravidae. Obstet. Gynecol. 92, 804–809 (1998).

    CAS  PubMed  Google Scholar 

  58. Stenlund, P. M., Ekman, G., Aedo, A. R. & Bygdeman, M. Induction of labor with mifepristone—a randomized, double-blind study versus placebo. Acta Obstet. Gynecol. Scand. 78, 793–798 (1999).

    CAS  PubMed  Google Scholar 

  59. Chwalisz, K. The use of progesterone antagonists for cervical ripening and as an adjunct to labour and delivery. Hum. Reprod. 9 (Suppl. 1), 131–161 (1994).

    CAS  PubMed  Google Scholar 

  60. Pointis, G., Rao, B., Latreille, M. T., Mignot, T. M. & Cedard, L. Progesterone levels in the circulating blood of the ovarian and uterine veins during gestation in the mouse. Biol. Reprod. 24, 801–805 (1981).

    CAS  PubMed  Google Scholar 

  61. Shynlova, O., Tsui, P., Jaffer, S. & Lye, S. J. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur. J. Obstet. Gynecol. Reprod. Biol. 144 (Suppl. 1), 2–10 (2009).

    Google Scholar 

  62. Toyoshima, K., Narahara, H., Furukawa, M., Frenkel, R. A. & Johnston, J. M. Platelet-activating factor. Role in fetal lung development and relationship to normal and premature labor. Clin. Perinatol. 22, 263–280 (1995).

    CAS  PubMed  Google Scholar 

  63. López Bernal, A., Newman, G. E., Phizackerley, P. J. & Turnbull, A. C. Surfactant stimulates prostaglandin E production in human amnion. Br. J. Obstet. Gynaecol. 95, 1013–1017 (1988).

    PubMed  Google Scholar 

  64. Condon, J. C., Jeyasuria, P., Faust, J. M., Wilson, J. M. & Mendelson, C. R. A decline in progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc. Natl Acad. Sci. USA 100, 9518–9523 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mesiano, S. et al. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J. Clin. Endocrinol. Metab. 87, 2924–2930 (2002).

    CAS  PubMed  Google Scholar 

  66. Kalkhoven, E., Wissink, S., van der Saag, P. T. & van der Burg, B. Negative interaction between the RelA(p65) subunit of NF-κB and the progesterone receptor. J. Biol. Chem. 271, 6217–6224 (1996).

    CAS  PubMed  Google Scholar 

  67. Hardy, D. B., Janowski, B. A., Chen, C.-C. & Mendelson, C. R. Progesterone receptor inhibits aromatase and inflammatory response pathways in breast cancer cells via ligand-dependent and ligand-independent mechanisms. Mol. Endocrinol. 22, 1812–1824 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mahendroo, M. S., Cala, K. M. & Russell, D. W. 5α-reduced androgens play a key role in murine parturition. Mol. Endocrinol. 10, 380–392 (1996).

    CAS  PubMed  Google Scholar 

  69. Mahendroo, M. S., Porter, A., Russell, D. W. & Word, R. A. The parturition defect in steroid 5α-reductase type 1 knockout mice is due to impaired cervical ripening. Mol. Endocrinol. 13, 981–992 (1999).

    CAS  PubMed  Google Scholar 

  70. Andersson, S., Minjarez, D., Yost, N. P. & Word, R. A. Estrogen and progesterone metabolism in the cervix during pregnancy and parturition. J. Clin. Endocrinol. Metab. 93, 2366–2374 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ishida, M. et al. Reproductive phenotypes in mice with targeted disruption of the 20α-hydroxysteroid dehydrogenase gene. J. Reprod. Dev. 53, 499–508 (2007).

    CAS  PubMed  Google Scholar 

  72. Piekorz, R. P., Gingras, S., Hoffmeyer, A., Ihle,J. N. & Weinstein, Y. Regulation of progesterone levels during pregnancy and parturition by signal transducer and activator of transcription 5 and 20α-hydroxysteroid dehydrogenase. Mol. Endocrinol. 19, 431–440 (2005).

    CAS  PubMed  Google Scholar 

  73. Challis, J. R. Sharp increase in free circulating oestrogens immediately before parturition in sheep. Nature 229, 208 (1971).

    CAS  PubMed  Google Scholar 

  74. Buster, J. E. et al. Interrelationships of circulating maternal steroid concentrations in third trimester pregnancies. II. C18 and C19 steroids: estradiol, estriol, dehydroepiandrosterone, dehydroepiandrosterone sulfate, δ5-androstenediol, δ-androstenedione, testosterone, and dihydrotestosterone. J. Clin. Endocrinol. Metab. 48, 139–142 (1979).

    CAS  PubMed  Google Scholar 

  75. Wu, W. X., Myers, D. A. & Nathanielsz, P. W. Changes in estrogen receptor messenger ribonucleic acid in sheep fetal and maternal tissues during late gestation and labor. Am. J. Obstet. Gynecol. 172, 844–850 (1995).

    CAS  PubMed  Google Scholar 

  76. Mesiano, S. & Welsh, T. N. Steroid hormone control of myometrial contractility and parturition. Semin. Cell Dev. Biol. 18, 321–331 (2007).

    CAS  PubMed  Google Scholar 

  77. Welsh, T. et al. Estrogen receptor (ER) expression and function in the pregnant human myometrium: estradiol via ERα activates ERK1/2 signaling in term myometrium. J. Endocrinol. 212, 227–238 (2012).

    CAS  PubMed  Google Scholar 

  78. Tibbetts, T. A., Conneely, O. M. & O'Malley, B. W. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol. Reprod. 60, 1158–1165 (1999).

    CAS  PubMed  Google Scholar 

  79. Murata, T., Narita, K., Honda, K., Matsukawa, S. & Higuchi, T. Differential regulation of estrogen receptor α and β mRNAs in the rat uterus during pregnancy and labor: possible involvement of estrogen receptors in oxytocin receptor regulation. Endocr. J. 50, 579–587 (2003).

    CAS  PubMed  Google Scholar 

  80. Piersanti, M. & Lye, S. J. Increase in messenger ribonucleic acid encoding the myometrial gap junction protein, connexin-43, requires protein synthesis and is associated with increased expression of the activator protein-1, c-fos. Endocrinology 136, 3571–3578 (1995).

    CAS  PubMed  Google Scholar 

  81. Tsuboi, K. et al. Uterine expression of prostaglandin H2 synthase in late pregnancy and during parturition in prostaglandin F receptor-deficient mice. Endocrinology 141, 315–324 (2000).

    CAS  PubMed  Google Scholar 

  82. Engstrøm, T. The regulation by ovarian steroids of prostaglandin synthesis and prostaglandin-induced contractility in non-pregnant rat myometrium. Modulating effects of isoproterenol. J. Endocrinol. 169, 33–41 (2001).

    PubMed  Google Scholar 

  83. Albinsson, S. et al. MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler. Thromb. Vasc. Biol. 30, 1118–1126 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, S. Y. et al. miR-143 regulation of prostaglandin-endoperoxidase synthase 2 in the amnion: implications for human parturition at term. PLoS ONE 6, e24131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hawkins, S. M. et al. Functional microRNA involved in endometriosis. Mol. Endocrinol. 25, 821–832 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ramon, L. A. et al. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum. Reprod. 26, 1082–1090 (2011).

    CAS  PubMed  Google Scholar 

  87. Zhao, Z. Z. et al. Evaluation of polymorphisms in predicted target sites for micro RNAs differentially expressed in endometriosis. Mol. Hum. Reprod. 17, 92–103 (2011).

    CAS  PubMed  Google Scholar 

  88. Burney, R. O. et al. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol. Hum. Reprod. 15, 625–631 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ohlsson Teague, E. M. et al. MicroRNA-regulated pathways associated with endometriosis. Mol. Endocrinol. 23, 265–275 (2009).

    PubMed  PubMed Central  Google Scholar 

  90. Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    CAS  PubMed  Google Scholar 

  91. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Spoelstra, N. S. et al. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res. 66, 3893–3902 (2006).

    CAS  PubMed  Google Scholar 

  93. Cochrane, D. R. et al. The role of miRNAs in progesterone action. Mol. Cell. Endocrinol. 357, 50–59 (2012).

    CAS  PubMed  Google Scholar 

  94. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    CAS  PubMed  Google Scholar 

  95. Postigo, A. A. & Dean, D. C. Differential expression and function of members of the zfh-1 family of zinc finger/homeodomain repressors. Proc. Natl Acad. Sci. USA 97, 6391–6396 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vandewalle, C., Van Roy, F. & Berx, G. The role of the ZEB family of transcription factors in development and disease. Cell. Mol. Life Sci. 66, 773–787 (2009).

    CAS  PubMed  Google Scholar 

  98. Brabletz, S. et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30, 770–782 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dudley, D. J., Branch, D. W., Edwin, S. S. & Mitchell, M. D. Induction of preterm birth in mice by RU486. Biol. Reprod. 55, 992–995 (1996).

    CAS  PubMed  Google Scholar 

  100. Wu, W. X., Ma, X. H., Zhang, Q. & Nathanielsz, P. W. Characterization of topology-, gestation- and labor-related changes of a cassette of myometrial contraction-associated protein mRNA in the pregnant baboon myometrium. J. Endocrinol. 171, 445–453 (2001).

    CAS  PubMed  Google Scholar 

  101. Ou, C. W., Chen, Z. Q., Qi, S. & Lye, S. J. Increased expression of the rat myometrial oxytocin receptor messenger ribonucleic acid during labor requires both mechanical and hormonal signals. Biol. Reprod. 59, 1055–1061 (1998).

    CAS  PubMed  Google Scholar 

  102. Ou, C. W., Orsino, A. & Lye, S. J. Expression of connexin-43 and connexin-26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals. Endocrinology 138, 5398–5407 (1997).

    CAS  PubMed  Google Scholar 

  103. Sparey, C., Robson, S. C., Bailey, J., Lyall, F. & Europe-Finner, G. N. The differential expression of myometrial connexin-43, cyclooxygenase-1 and -2, and Gs α proteins in the upper and lower segments of the human uterus during pregnancy and labor. J. Clin. Endocrinol. Metab. 84, 1705–1710 (1999).

    CAS  PubMed  Google Scholar 

  104. Döring, B. et al. Ablation of connexin43 in uterine smooth muscle cells of the mouse causes delayed parturition. J. Cell. Sci. 119, 1715–1722 (2006).

    PubMed  Google Scholar 

  105. Nishimori, K. et al. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc. Natl Acad. Sci. USA 93, 11699–11704 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Takayanagi, Y. et al. Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc. Natl Acad. Sci. USA 102, 16096–16101 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Puri, C. P. & Garfield, R. E. Changes in hormone levels and gap junctions in the rat uterus during pregnancy and parturition. Biol. Reprod. 27, 967–975 (1982).

    CAS  PubMed  Google Scholar 

  108. Power, S. G. & Challis, J. R. The effects of gestational age and intrafetal ACTH administration on the concentration of progesterone in the fetal membranes, endometrium, and myometrium of pregnant sheep. Can. J. Physiol. Pharmacol. 65, 136–140 (1987).

    CAS  PubMed  Google Scholar 

  109. Csapo, A. I., Eskola, J. & Tarro, S. Gestational changes in the progesterone and prostaglandin F levels of the guinea-pig. Prostaglandins 21, 53–64 (1981).

    CAS  PubMed  Google Scholar 

  110. Runnebaum, B. & Zander, J. Progesterone and 20α-dihydroprogesterone in human myometrium during pregnancy. Acta Endocrinol. Suppl. (Copenh.) 150, 3–45 (1971).

    CAS  Google Scholar 

  111. Penning, T. M. & Drury, J. E. Human aldo-keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Arch. Biochem. Biophys. 464, 241–250 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Richer, J. K. et al. Convergence of progesterone with growth factor and cytokine signaling in breast cancer. Progesterone receptors regulate signal transducers and activators of transcription expression and activity. J. Biol. Chem. 273, 31317–31326 (1998).

    CAS  PubMed  Google Scholar 

  113. Stocco, C. O., Chedrese, J. & Deis, R. P. Luteal expression of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, and 20α-hydroxysteroid dehydrogenase genes in late pregnant rats: effect of luteinizing hormone and RU486. Biol. Reprod. 65, 1114–1119 (2001).

    CAS  PubMed  Google Scholar 

  114. Chen, J. & Nathans, J. Estrogen-related receptor β/NR3B2 controls epithelial cell fate and endolymph production by the stria vascularis. Dev. Cell 13, 325–337 (2007).

    PubMed  Google Scholar 

  115. Yin, G. et al. TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene 29, 3545–3553 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Loebel, D. A., Tsoi, B., Wong, N. & Tam, P. P. A conserved noncoding intronic transcript at the mouse Dnm3 locus. Genomics 85, 782–789 (2005).

    CAS  PubMed  Google Scholar 

  117. Olson, D. M. et al. Myometrial activation and preterm labour: evidence supporting a role for the prostaglandin F receptor—a review. Placenta 24 (Suppl. A), 47–54 (2003).

    Google Scholar 

  118. Havelock, J. C. et al. Human myometrial gene expression before and during parturition. Biol. Reprod. 72, 707–719 (2005).

    CAS  PubMed  Google Scholar 

  119. Menon, R. et al. Biomarkers of spontaneous preterm birth: an overview of the literature in the last four decades. Reprod. Sci. 18, 1046–1070 (2011).

    PubMed  Google Scholar 

  120. Wittmann, J. & Jäck, H. M. Serum microRNAs as powerful cancer biomarkers. Biochim. Biophys. Acta 1806, 200–207 (2010).

    CAS  PubMed  Google Scholar 

  121. Etheridge, A., Lee, I., Hood, L., Galas, D. & Wang, K. Extracellular microRNA: a new source of biomarkers. Mutat. Res. 717, 85–90 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Frost, R. J. & Olson, E. N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl Acad. Sci. USA 108, 21075–21080 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. van Rooij, E., Marshall, W. S. & Olson, E. N. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res. 103, 919–928 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Montgomery, R. L. et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124, 1537–1547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Obad, S. et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43, 371–378 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Concepcion, C. P., Bonetti, C. & Ventura, A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J. 18, 262–267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ruvkun, G. The perfect storm of tiny RNAs. Nat. Med. 14, 1041–1045 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research was supported by the National Institutes of Health (NIH 5-P01-HD011149) and the March of Dimes Foundation (Prematurity Research Grant No. 21-FY11-30).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Carole R. Mendelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renthal, N., Williams, K. & Mendelson, C. MicroRNAs—mediators of myometrial contractility during pregnancy and labour. Nat Rev Endocrinol 9, 391–401 (2013). https://doi.org/10.1038/nrendo.2013.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing