Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effect of systemic medications on onset and progression of diabetic retinopathy

Abstract

Diabetic retinopathy remains a leading cause of visual loss worldwide. Patients with diabetes mellitus commonly have multiple comorbidities treated with a wide variety of medications. Systemic medications that target glycemic control and coexisting conditions may have beneficial or deleterious effects on the onset or progression of diabetic retinopathy. In addition, data is accumulating to suggest that the use of systemic therapy primarily to address ocular complications of diabetic retinopathy may be a promising therapeutic approach. This article reviews our current understanding of the ocular-specific effects of systemic medications commonly used by patients with diabetes mellitus, including those directed at control of hyperglycemia, dyslipidemia, hypertension, cardiac disease, anemia, inflammation and cancer. Current clinical evidence is strongest for the use of angiotensin-converting enzyme inhibitors and angiotensin-2 receptor blockers in preventing the onset or slowing the progression of early diabetic retinopathy. To a more limited extent, evidence of a benefit of fibrates for diabetic macular edema exists. Numerous other agents hold considerable promise or potential risk. Thus, these compounds must undergo further rigorous study to determine the actual clinical efficacy and adverse effects before definitive therapeutic care recommendations can be offered.

Key Points

  • Individuals with diabetes mellitus are at risk of multiple systemic comorbidities, as well as numerous microvascular and macrovascular complications

  • An extensive and diverse array of medications, acting through multiple mechanisms, is available for managing the systemic comorbidities of diabetes mellitus

  • Systemic medications may have independent beneficial or deleterious effects on the onset or progression of diabetic retinopathy that are unrelated to the primary therapeutic intent

  • The ocular effects of systemic medications must be appreciated and considered when determining treatment regimens and suggesting ophthalmic follow-up

  • Accumulating data suggest that the use of systemic therapy to primarily address ocular complications of diabetic retinopathy could be a promising approach

  • As our understanding of the interactions between ocular status and systemic medications improves, close communication between all medical and eye-care providers will become increasingly important

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. [No authors listed] Standards of medical care in diabetes-—2010. Diabetes Care 33 (Suppl. 1) S11–S61 (2010).

  2. Unwin, N., Gan, D. & Whiting, D. The IDF Diabetes Atlas: Providing evidence, raising awareness and promoting action. Diabetes Res. Clin. Pract. 87, 2–3 (2010).

    Article  PubMed  Google Scholar 

  3. Ioacara, S. et al. Improvements in life expectancy in type 1 diabetes patients in the last six decades. Diabetes Res. Clin. Pract. 86, 146–151 (2009).

    Article  PubMed  Google Scholar 

  4. Keenan, H. A. et al. Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration: the 50-year medalist study. Diabetes Care 30, 1995–1997 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Bain, S. C. et al. Characteristics of type 1 diabetes of over 50 years duration (the Golden Years Cohort). Diabet. Med. 20, 808–811 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Centers for Disease Control and Prevention. National diabetes fact sheet: General information and national estimates on diabetes in the United States [online], (2007).

  7. Luckie, R. et al. Fear of visual loss in patients with diabetes: results of the prevalence of diabetic eye disease in Tayside, Scotland (P-DETS) study. Diabet. Med. 24, 1086–1092 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Kempen, J. H. et al. The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 122, 552–563 (2004).

    Article  PubMed  Google Scholar 

  9. Krolewski, A. S. et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N. Engl. J. Med. 318, 140–145 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Agardh, C. D., Agardh, E. & Torffvit, O. The association between retinopathy, nephropathy, cardiovascular disease and long-term metabolic control in type 1 diabetes mellitus: a 5 year follow-up study of 442 adult patients in routine care. Diabetes Res. Clin. Pract. 35, 113–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Alexander, L. J., Cavallerano, J., Schwartz, G. L. & Zimmerman, B. R. Co-management of patients with hypertension or diabetes. Optom. Clin. 2, 131–142 (1992).

    CAS  PubMed  Google Scholar 

  12. Marshall, G., Garg, S. K., Jackson, W. E., Holmes, D. L. & Chase, H. P. Factors influencing the onset and progression of diabetic retinopathy in subjects with insulin-dependent diabetes mellitus. Ophthalmology 100, 1133–1139 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Aiello, L. P., Cahill, M. T. & Wong, J. S. Systemic considerations in the management of diabetic retinopathy. Am. J. Ophthalmol. 132, 760–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Gabbay, K. H. The sorbitol pathway and the complications of diabetes. N. Engl. J. Med. 288, 831–836 (1973).

    Article  CAS  PubMed  Google Scholar 

  15. Brownlee, M., Vlassara, H. & Cerami, A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Intern. Med. 101, 527–537 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Ways, D. K. & Sheetz, M. J. The role of protein kinase C in the development of the complications of diabetes. Vitam. Horm. 60, 149–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Baynes, J. W. & Thorpe, S. R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Kern, T. S. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp. Diabetes Res. 2007, 95103 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Grunwald, J. E. et al. Diabetic glycemic control and retinal blood flow. Diabetes 39, 602–607 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Aiello, L. P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Antonetti, D. A., Barber, A. J., Hollinger, L. A., Wolpert, E. B. & Gardner, T. W. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 274, 23463–23467 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. [No authors listed] Four risk factors for severe visual loss in diabetic retinopathy. The third report from the Diabetic Retinopathy Study. The Diabetic Retinopathy Study Research Group. Arch. Ophthalmol. 97, 654–655 (1979).

  23. [No authors listed] Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch. Ophthalmol. 103, 1796–1806 (1985).

  24. Turner, R. C. The U.K. Prospective Diabetes Study. A review. Diabetes Care 21 (Suppl. 3) C35–C38 (1998).

    Article  PubMed  Google Scholar 

  25. Keech, A. C. et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 370, 1687–1697 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. [No authors listed] Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 22, 99–111 (1999).

  27. [No authors listed] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 837–853 (1998).

  28. Sjølie, A. K. et al. Retinopathy and vision loss in insulin-dependent diabetes in Europe. The EURODIAB IDDM Complications Study. Ophthalmology 104, 252–260 (1997).

    Article  PubMed  Google Scholar 

  29. [No authors listed] Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 317, 703–713 (1998).

  30. White, N. H. et al. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial. Arch. Ophthalmol. 126, 1707–1715 (2008).

    Article  PubMed  Google Scholar 

  31. [No authors listed] Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287, 2563–2569 (2002).

  32. [No authors listed] The effect of intensive diabetes treatment on the progression of diabetic retinopathy in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial. Arch. Ophthalmol. 113, 36–51 (1995).

  33. Klein, R., Knudtson, M. D., Lee, K. E., Gangnon, R. & Klein, B. E. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology 115, 1859–1868 (2008).

    Article  PubMed  Google Scholar 

  34. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Anfossi, G., Russo, I., Doronzo, G. & Trovati, M. Relevance of the vascular effects of insulin in the rationale of its therapeutical use. Cardiovasc. Hematol. Disord. Drug Targets. 7, 228–249 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, M. et al. Insulin-induced vascular endothelial growth factor expression in retina. Invest. Ophthalmol. Vis. Sci. 40, 3281–3286 (1999).

    CAS  PubMed  Google Scholar 

  37. Poulaki, V. et al. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J. Clin. Invest. 109, 805–815 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adamis, A. P. et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445–450 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. [No authors listed] Early worsening of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch. Ophthalmol. 116, 874–886 (1998).

  40. [No authors listed] Blood glucose control and the evolution of diabetic retinopathy and albuminuria. A preliminary multicenter trial. The Kroc Collaborative Study Group. N. Engl. J. Med. 311, 365–372 (1984).

  41. Lauritzen, T., Frost-Larsen, K., Larsen, H. W. & Deckert, T. Effect of 1 year of near-normal blood glucose levels on retinopathy in insulin-dependent diabetics. Lancet 1, 200–204 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Funatsu, H., Yamashita, H., Ohashi, Y. & Ishigaki, T. Effect of rapid glycemic control on progression of diabetic retinopathy. Jpn. J. Ophthalmol. 36, 356–367 (1992).

    CAS  PubMed  Google Scholar 

  43. Agardh, C. D., Eckert, B. & Agardh, E. Irreversible progression of severe retinopathy in young type I insulin-dependent diabetes mellitus patients after improved metabolic control. J. Diabetes Complications 6, 96–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Ernest, J. T., Goldstick, T. K. & Engerman, R. L. Hyperglycemia impairs retinal oxygen autoregulation in normal and diabetic dogs. Invest. Ophthalmol. Vis. Sci. 24, 985–989 (1983).

    CAS  PubMed  Google Scholar 

  45. Grunwald, J. E. et al. Strict metabolic control and retinal blood flow in diabetes mellitus. Br. J. Ophthalmol. 78, 598–604 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Casati, S., Zoppini, G., Muggeo, M. & Marchini, G. Sustained regression of florid diabetic retinopathy in a patient with Donohue syndrome (leprechaunism). Eur. J. Ophthalmol. 20, 224–227 (2010).

    Article  PubMed  Google Scholar 

  47. Daneman, D. et al. Progressive retinopathy with improved control in diabetic dwarfism (Mauriac's syndrome). Diabetes Care 4, 360–365 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Rosenstock, J. et al. Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin. Diabetes Care 24, 631–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Stumvoll, M. & Häring, H. U. Glitazones: clinical effects and molecular mechanisms. Ann. Med. 34, 217–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Pershadsingh, H. A. & Moore, D. M. PPARgamma agonists: Potential as therapeutics for neovascular retinopathies. PPAR Res. 2008, 164273 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shen, L. Q., Child, A., Weber, G. M., Folkman, J. & Aiello, L. P. Rosiglitazone and delayed onset of proliferative diabetic retinopathy. Arch. Ophthalmol. 126, 793–799 (2008).

    Article  PubMed  Google Scholar 

  52. Panigrahy, D. et al. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J. Clin. Invest. 110, 923–932 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Home, P. D. et al. Rosiglitazone evaluated for cardiovascular outcomes--an interim analysis. N. Engl. J. Med. 357, 28–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hollenberg, N. K. Considerations for management of fluid dynamic issues associated with thiazolidinediones. Am. J. Med. 115 (Suppl. 8A) 111S–115S (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ryan, E. H. Jr et al. Diabetic macular edema associated with glitazone use. Retina 26, 562–570 (2006).

    Article  PubMed  Google Scholar 

  57. Fong, D. S. & Contreras, R. Glitazone use associated with diabetic macular edema. Am. J. Ophthalmol. 147, 583–586 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Ambrosius, W. T. et al. Lack of association between thiazolidinediones and macular edema in type 2 diabetes: the ACCORD eye substudy. Arch. Ophthalmol. 128, 312–318 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nathan, D. M. et al. Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 29, 1963–1972 (2006).

    Article  PubMed  Google Scholar 

  60. [No authors listed] Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 854–865 (1998).

  61. Cusi, K., Consoli, A. & DeFronzo, R. A. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 81, 4059–4067 (1996).

    CAS  PubMed  Google Scholar 

  62. Nagi, D. K. & Yudkin, J. S. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. A study of two ethnic groups. Diabetes Care 16, 621–629 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Xavier, D. O. et al. Metformin inhibits inflammatory angiogenesis in a murine sponge model. Biomed. Pharmacother. 64, 220–225 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Tan, B. K. et al. Metformin decreases angiogenesis via NF-kappaB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc. Res. 83, 566–574 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Joussen, A. M. et al. Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J. 17, 76–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Chew, E. Y. et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch. Ophthalmol. 114, 1079–1084 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Klein, B. E., Moss, S. E., Klein, R. & Surawicz, T. S. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XIII. Relationship of serum cholesterol to retinopathy and hard exudate. Ophthalmology 98, 1261–1265 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Lyons, T. J. et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest. Ophthalmol. Vis. Sci. 45, 910–918 (2004).

    Article  PubMed  Google Scholar 

  69. Ansquer, J. C., Foucher, C., Aubonnet, P. & Le Malicot, K. Fibrates and microvascular complications in diabetes—insight from the FIELD study. Curr. Pharm. Des. 15, 537–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Panigrahy, D. et al. PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc. Natl Acad. Sci. USA 105, 985–990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bellosta, S., Ferri, N., Bernini, F., Paoletti, R. & Corsini, A. Non-lipid-related effects of statins. Ann. Med. 32, 164–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Danesh, F. R. & Kanwar, Y. S. Modulatory effects of HMG-CoA reductase inhibitors in diabetic microangiopathy. FASEB J. 18, 805–815 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Duncan, L. J. et al. A three-year trial of atromid therapy in exudative diabetic retinopathy. Diabetes 17, 458–467 (1968).

    Article  CAS  PubMed  Google Scholar 

  74. Cullen, J. F., Town, S. M. & Campbell, C. J. Double-blind trial of Atromid-S in exudative diabetic retinopathy. Trans. Ophthalmol. Soc. UK 94, 554–562 (1974).

    CAS  PubMed  Google Scholar 

  75. Cullen, J. F., Ireland, J. T. & Oliver, M. F. A controlled trial of Atromid therapy in exudative diabetic retinopathy. Trans. Ophthalmol. Soc. UK 84, 281–295 (1964).

    CAS  PubMed  Google Scholar 

  76. Freyberger, H., Schifferdecker, E. & Schatz, H. [Regression of hard exudates in diabetic background retinopathy in therapy with etofibrate antilipemic agent]. Med. Klin. (Munich) 89, 594–597, 633 (1994).

    CAS  Google Scholar 

  77. Emmerich, K. H. et al. [Efficacy and safety of etofibrate in patients with non-proliferative diabetic retinopathy]. Klin. Monbl. Augenheilkd. 226, 561–567 (2009).

    Article  PubMed  Google Scholar 

  78. Fioretto, P., Dodson, P. M., Ziegler, D. & Rosenson, R. S. Residual microvascular risk in diabetes: unmet needs and future directions. Nat. Rev. Endocrinol. 6, 19–25 (2010).

    Article  PubMed  Google Scholar 

  79. Gaede, P. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 348, 383–393 (2003).

    Article  PubMed  Google Scholar 

  80. Colhoun, H. M. et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364, 685–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Chew, E. Y. et al. Rationale, design, and methods of the Action to Control Cardiovascular Risk in Diabetes Eye Study (ACCORD-EYE). Am. J. Cardiol. 99, 103i–111i (2007).

    Article  PubMed  Google Scholar 

  82. The ACCORD Study Group and ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. doi: 10.1056/NEJMoa1001288.

  83. Wilkinson-Berka, J. L. Angiotensin and diabetic retinopathy. Int. J. Biochem. Cell Biol. 38, 752–765 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Wagner, J. et al. Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system. Br. J. Ophthalmol. 80, 159–163 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sarlos, S. et al. Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am. J. Pathol. 163, 879–887 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klein, R. et al. Relationship of blood pressure to retinal vessel diameter in type 1 diabetes mellitus. Arch. Ophthalmol. 128, 198–205 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. [No authors listed] Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. UK Prospective Diabetes Study Group. BMJ 317, 713–720 (1998).

  88. [No authors listed] Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 317, 703–713 (1998).

  89. Chaturvedi, N. et al. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus. Lancet 351, 28–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Patel, A. et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370, 829–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Mauer, M. et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N. Engl. J. Med. 361, 40–51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sjølie, A. K. et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial. Lancet 372, 1385–1393 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Chaturvedi, N. et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet 372, 1394–1402 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Colwell, J. A. et al. Platelet adhesion and aggregation in diabetes mellitus. Metabolism 28 (Suppl. 1) 394–400 (1979).

    Article  CAS  PubMed  Google Scholar 

  95. Boeri, D., Maiello, M. & Lorenzi, M. Increased prevalence of microthromboses in retinal capillaries of diabetic individuals. Diabetes 50, 1432–1439 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. [No authors listed] Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98, 757–765 (1991).

  97. Chew, E. Y., Klein, M. L., Murphy, R. P., Remaley, N. A. & Ferris, F. L. III. Effects of aspirin on vitreous/preretinal hemorrhage in patients with diabetes mellitus. Early Treatment Diabetic Retinopathy Study report no. 20. Arch. Ophthalmol. 113, 52–55 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. [No authors listed] Effect of aspirin alone and aspirin plus dipyridamole in early diabetic retinopathy. A multicenter randomized controlled clinical trial. The DAMAD Study Group. Diabetes 38, 491–498 (1989).

  99. Johnson, L. N., Stetson, S. W., Krohel, G. B., Cipollo, C. L. & Madsen, R. W. Aspirin use and the prevention of acute ischemic cranial nerve palsy. Am. J. Ophthalmol. 129, 367–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Chew, E. Y. et al. Aspirin effects on the development of cataracts in patients with diabetes mellitus. Early treatment diabetic retinopathy study report 16. Arch. Ophthalmol. 110, 339–342 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. [No authors listed] Aspirin effects on mortality and morbidity in patients with diabetes mellitus. Early Treatment Diabetic Retinopathy Study report 14. ETDRS Investigators. JAMA 268, 1292–1300 (1992).

  102. Joussen, A. M. et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J. 16, 438–440 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Zheng, L., Howell, S. J., Hatala, D. A., Huang, K. & Kern, T. S. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy. Diabetes 56, 337–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Sun, W., Gerhardinger, C., Dagher, Z., Hoehn, T. & Lorenzi, M. Aspirin at low-intermediate concentrations protects retinal vessels in experimental diabetic retinopathy through non-platelet-mediated effects. Diabetes 54, 3418–3426 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. [No authors listed] Ticlopidine treatment reduces the progression of nonproliferative diabetic retinopathy. The TIMAD Study Group. Arch. Ophthalmol. 108, 1577–1583 (1990).

  106. Superstein, R. et al. Prevalence of ocular hemorrhage in patients receiving warfarin therapy. Can. J. Ophthalmol. 35, 385–389 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Benzimra, J. D. et al. The Cataract National Dataset electronic multicentre audit of 55,567 operations: antiplatelet and anticoagulant medications. Eye (Lond.) 23, 10–16 (2009).

    Article  CAS  Google Scholar 

  108. Jamula, E., Anderson, J. & Douketis, J. D. Safety of continuing warfarin therapy during cataract surgery: a systematic review and meta-analysis. Thromb. Res. 124, 292–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Fu, A. D. et al. Anticoagulation with warfarin in vitreoretinal surgery. Retina 27, 290–295 (2007).

    Article  PubMed  Google Scholar 

  110. Dayani, P. N. & Grand, M. G. Maintenance of warfarin anticoagulation for patients undergoing vitreoretinal surgery. Arch. Ophthalmol. 124, 1558–1565 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Dayani, P. N., Siddiqi, O. K. & Holekamp, N. M. Safety of intravitreal injections in patients receiving warfarin anticoagulation. Am. J. Ophthalmol. 144, 451–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Tilanus, M. A., Vaandrager, W., Cuypers, M. H., Verbeek, A. M. & Hoyng, C. B. Relationship between anticoagulant medication and massive intraocular hemorrhage in age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 238, 482–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. [No authors listed] Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. The Diabetic Retinopathy Study Research Group. Ophthalmology 88, 583–600 (1981).

  114. [No authors listed] Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98, 766–785 (1991).

  115. Avery, R. L. Regression of retinal and iris neovascularization after intravitreal bevacizumab (Avastin) treatment. Retina 26, 352–354 (2006).

    Article  PubMed  Google Scholar 

  116. Yoshida, T. et al. Digoxin inhibits retinal ischemia-induced HIF-1α expression and ocular neovascularization. FASEB J. doi:10.1096/fj.09-145664.

  117. Khan, M. I., Chesney, J. A., Laber, D. A. & Miller, D. M. Digitalis, a targeted therapy for cancer? Am. J. Med. Sci. 337, 355–359 (2009).

    Article  PubMed  Google Scholar 

  118. Prassas, I., Paliouras, M., Datti, A. & Diamandis, E. P. High-throughput screening identifies cardiac glycosides as potent inhibitors of human tissue kallikrein expression: implications for cancer therapies. Clin. Cancer Res. 14, 5778–5784 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Gao, B. B. et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat. Med. 13, 181–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Phipps, J. A. et al. Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension 53, 175–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Schneider, L., Lumry, W., Vegh, A., Williams, A. H. & Schmalbach, T. Critical role of kallikrein in hereditary angioedema pathogenesis: a clinical trial of ecallantide, a novel kallikrein inhibitor. J. Allergy Clin. Immunol. 120, 416–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Jacques, M. L. Study to assess the safety and tolerability of a single administration of FOV2302 (ecallantide) in patients with macular edema associated with central retinal vein occlusion. ClinicalTrials.gov Identifier: NCT00969293. Clinical Trials.gov [online], (2010).

    Google Scholar 

  123. Aiello, L. P. Targeting intraocular neovascularization and edema—one drop at a time. N. Engl. J. Med. 359, 967–969 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Watanabe, D. et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N. Engl. J. Med. 353, 782–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Tong, Z. et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc. Natl Acad. Sci. USA 105, 6998–7003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Powell, E. D. & Field, R. A. Diabetic retinopathy and rheumatoid arthritis. Lancet 2, 17–18 (1964).

    Article  CAS  PubMed  Google Scholar 

  127. Goldfine, A. B. et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 1, 36–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fleischman, A., Shoelson, S. E., Bernier, R. & Goldfine, A. B. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care 31, 289–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Chew, E. Y. et al. Preliminary assessment of celecoxib and microdiode pulse laser treatment of diabetic macular edema. Retina 30, 459–467 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Solomon, S. D. et al. Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: the cross trial safety analysis. Circulation 117, 2104–2113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chew, E. et al. Randomized trial of peribulbar triamcinolone acetonide with and without focal photocoagulation for mild diabetic macular edema: a pilot study. Ophthalmology 114, 1190–1196 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Gillies, M. C. et al. Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmology 113, 1533–1538 (2006).

    Article  PubMed  Google Scholar 

  133. Jonas, J. B., Kreissig, I., Sofker, A. & Degenring, R. F. Intravitreal injection of triamcinolone for diffuse diabetic macular edema. Arch. Ophthalmol. 121, 57–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Martidis, A. et al. Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 109, 920–927 (2002).

    Article  PubMed  Google Scholar 

  135. [No authors listed] A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 115, 1447–1449, 1449.e1–e10 (2008).

  136. Beck, R. W. et al. Three-year follow-up of a randomized trial comparing focal/grid photocoagulation and intravitreal triamcinolone for diabetic macular edema. Arch. Ophthalmol. 127, 245–251 (2009).

    Article  PubMed  Google Scholar 

  137. Bressler, N. M. et al. Exploratory analysis of diabetic retinopathy progression through 3 years in a randomized clinical trial that compares intravitreal triamcinolone acetonide with focal/grid photocoagulation. Arch. Ophthalmol. 127, 1566–1571 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Silva, P. S., Sun, J. K. & Aiello, L. P. Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy. Semin. Ophthalmol. 24, 93–99 (2009).

    Article  PubMed  Google Scholar 

  139. Genentech Inc., Avastin® (bevacizumab)—Full prescribing information [online], (2010).

  140. Rosenfeld, P. J., Moshfeghi, A. A. & Puliafito, C. A. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg. Lasers Imaging 36, 331–335 (2005).

    Article  PubMed  Google Scholar 

  141. Haritoglou, C. et al. Intravitreal bevacizumab (Avastin) therapy for persistent diffuse diabetic macular edema. Retina 26, 999–1005 (2006).

    Article  PubMed  Google Scholar 

  142. Arevalo, J. F. et al. Comparison of two doses of primary intravitreal bevacizumab (Avastin) for diffuse diabetic macular edema: results from the Pan-American Collaborative Retina Study Group (PACORES) at 12-month follow-up. Graefes Arch. Clin. Exp. Ophthalmol. 247, 735–743 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Chun, D. W., Heier, J. S., Topping, T. M., Duker, J. S. & Bankert, J. M. A pilot study of multiple intravitreal injections of ranibizumab in patients with center-involving clinically significant diabetic macular edema. Ophthalmology 113, 1706–1712 (2006).

    Article  PubMed  Google Scholar 

  144. Beck, R. W. & Glassman, A. R. Laser-Ranibizumab-Triamcinolone for proliferative diabetic retinopathy (LRTforDME+PRP). ClinicalTrials.gov Identifier: NCT00445003. Clinical Trials.gov [online], (2008).

    Google Scholar 

  145. Scott, I. U. et al. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology 114, 1860–1867 (2007).

    Article  PubMed  Google Scholar 

  146. Diabetic Retinopathy Clinical Research Network et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117, 1064–1077 (2010).

  147. Bakri, S. J. et al. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology 114, 2179–2182 (2007).

    Article  PubMed  Google Scholar 

  148. Bakri, S. J., Snyder, M. R., Reid, J. M., Pulido, J. S. & Singh, R. J. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology 114, 855–859 (2007).

    Article  PubMed  Google Scholar 

  149. Moshfeghi, A. A. et al. Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration: twenty-four-week results of an uncontrolled open-label clinical study. Ophthalmology 113, 2002–2012 (2006).

    Article  PubMed  Google Scholar 

  150. Mulcahy, M. F. & Benson, A. B. III. Bevacizumab in the treatment of colorectal cancer. Expert Opin. Biol. Ther. 5, 997–1005 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Ueta, T., Yanagi, Y., Tamaki, Y. & Yamaguchi, T. Cerebrovascular accidents in ranibizumab. Ophthalmology 116, 362 (2009).

    Article  PubMed  Google Scholar 

  152. Fung, A. E., Rosenfeld, P. J. & Reichel, E. The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide. Br. J. Ophthalmol. 90, 1344–1349 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li, J. et al. Systemic administration of HMG-CoA reductase inhibitor protects the blood-retinal barrier and ameliorates retinal inflammation in type 2 diabetes. Exp. Eye Res. 89, 71–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nauck, M., Karakiulakis, G., Perruchoud, A. P., Papakonstantinou, E. & Roth, M. Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur. J. Pharmacol. 341, 309–315 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Aiello, L. P. et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl Acad. Sci. USA 92, 10457–10461 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Laurie Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

P. S. Silva, J. D. Cavallerano, J. K. Sun and L. P. Aiello researched the data for the article. P. S. Silva, J. D. Cavallerano, J. K. Sun, L. M. Aiello and L. P. Aiello provided a substantial contribution to discussions of the content. P. S. Silva, J. D. Cavallerano, J. K. Sun, L. M. Aiello and L. P. Aiello contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Lloyd Paul Aiello.

Ethics declarations

Competing interests

L. P. Aiello is a Data Monitoring Board Member for Genentech and a consultant for Eli Lilly, GlaxoSmithKline, Merck, Novartis and Pfizer. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, P., Cavallerano, J., Sun, J. et al. Effect of systemic medications on onset and progression of diabetic retinopathy. Nat Rev Endocrinol 6, 494–508 (2010). https://doi.org/10.1038/nrendo.2010.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing