Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Tumor size and survival in breast cancer—a reappraisal

Abstract

The size of a breast cancer at diagnosis has conventionally been thought of as a fundamental and critical determinant of clinical outcome. However, the tendency of some subtypes of breast cancer to behave aggressively, despite being small (≤1 cm in diameter), questions the premise that cancer size should always be considered in treatment decisions. Although there is an association between tumor size and lymph-node involvement for most tumor types, this pattern is not invariable. We speculate that the uncoupling of tumor size, lymph-node status and prognosis in some subtypes of breast cancers might reflect an underlying disproportionate relationship between the number of cancer cells with metastatic potential and the size of the cancer. Alternatively, some small cancers might harbor cells that are inherently aggressive and are likely to metastasize. These observations have implications for the screening and treatment of breast cancers, particularly for women with basal-like and BRCA1-related breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumor size and survival: associations with molecular subtypes, genetic instability and the stem cell hypothesis.

Similar content being viewed by others

References

  1. Sotiriou, C. & Piccart, M. J. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat. Rev. Cancer 7, 545–553 (2007).

    Article  CAS  Google Scholar 

  2. Weigelt, B., Baehner, F. L. & Reis-Filho, J. S. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J. Pathol. 220, 263–280 (2010).

    Article  CAS  Google Scholar 

  3. Mook, S. et al. Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol. 10, 1070–1076 (2009).

    Article  Google Scholar 

  4. Singletary, S. E. et al. Revision of the American Joint Committee on Cancer staging system for breast cancer. J. Clin. Oncol. 20, 3628–3636 (2002).

    Article  Google Scholar 

  5. Fisher, B., Slack, N. H. & Bross, I. D. Cancer of the breast: size of neoplasm and prognosis. Cancer 24, 1071–1080 (1969).

    Article  CAS  Google Scholar 

  6. Smart, C. R., Myers, M. H. & Gloeckler, L. A. Implications from SEER data on breast cancer management. Cancer 41, 787–789 (1978).

    Article  CAS  Google Scholar 

  7. Carter, C. L., Allen, C. & Henson, D. E. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63, 181–187 (1989).

    Article  CAS  Google Scholar 

  8. Olivotto, I. A. et al. Prediction of axillary lymph node involvement of women with invasive breast carcinoma: a multivariate analysis. Cancer 83, 948–955 (1998).

    Article  CAS  Google Scholar 

  9. Sutcliffe, P. et al. Use of classical and novel biomarkers as prognostic risk factors for localised prostate cancer: a systematic review. Health Technol. Assess. 13, 1–242 (2009).

    Article  Google Scholar 

  10. Cheang, M. C. et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl Cancer Inst. 101, 736–750 (2009).

    Article  CAS  Google Scholar 

  11. Norton, L. & Massagué, J. Is cancer a disease of self-seeding? Nat. Med. 12, 875–878 (2006).

    Article  CAS  Google Scholar 

  12. Norton, L. Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988).

    CAS  Google Scholar 

  13. Honrado, E., Benítez, J. & Palacios, J. The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod. Pathol. 18, 1305–1320 (2005).

    Article  CAS  Google Scholar 

  14. Bernards, R. & Weinberg, R. A. A progression puzzle. Nature 418, 823 (2002).

    Article  CAS  Google Scholar 

  15. Collett, K. et al. A basal epithelial phenotype is more frequent in interval breast cancers compared with screen detected tumors. Cancer Epidemiol. Biomarkers Prev. 14, 1108–1112 (2005).

    Article  CAS  Google Scholar 

  16. Komenaka, I. K. et al. The development of interval breast malignancies in patients with BRCA mutations. Cancer 100, 2079–2083 (2004).

    Article  CAS  Google Scholar 

  17. Rakha, E. A., Reis-Filho, J. S. & Ellis, I. O. Basal-like breast cancer: a critical review. J. Clin. Oncol. 26, 2568–2581 (2008).

    Article  Google Scholar 

  18. Wirapati, P. et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10, R65 (2008).

    Article  Google Scholar 

  19. Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. Cancer Res. 14, 5158–5165 (2008).

    Article  CAS  Google Scholar 

  20. Van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  21. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    Article  CAS  Google Scholar 

  22. Dent, R. et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res. 13, 4429–4434 (2007).

    Article  Google Scholar 

  23. Tischkowitz, M. et al. Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer 7, 134 (2007).

    Article  Google Scholar 

  24. Cheang, M. C. et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res. 14, 1368–1376 (2008).

    Article  CAS  Google Scholar 

  25. Foulkes, W. D. et al. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res. 64, 830–835 (2004).

    Article  CAS  Google Scholar 

  26. Arnes, J. B. et al. Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clin. Cancer Res. 11, 4003–4011 (2005).

    Article  CAS  Google Scholar 

  27. Foulkes, W. D., Grainge, M. J., Rakha, E. A., Green, A. R. & Ellis, I. O. Tumor size is an unreliable predictor of prognosis in basal-like breast cancers and does not correlate closely with lymph node status. Breast Cancer Res. Treat. 117, 199–204 (2008).

    Article  Google Scholar 

  28. Dent, R. et al. Time to disease recurrence in basal-type breast cancers: effects of tumor size and lymph node status. Cancer 115, 4917–4923 (2009).

    Article  Google Scholar 

  29. Foulkes, W. D. et al. Disruption of the expected positive correlation between breast tumor size and lymph node status in BRCA1-related breast carcinoma. Cancer 98, 1569–1577 (2003).

    Article  Google Scholar 

  30. Rennert, G. et al. Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations. N. Engl. J. Med. 357, 115–123 (2007).

    Article  CAS  Google Scholar 

  31. Gonzalez-Angulo, A. M. et al. High risk of recurrence for patients with breast cancer who have human epidermal growth factor receptor 2-positive, node-negative tumors 1 cm or smaller. J. Clin. Oncol. 27, 5700–5706 (2009).

    Article  Google Scholar 

  32. Curigliano, G. et al. Clinical relevance of HER2 overexpression/amplification in patients with small tumor size and node-negative breast cancer. J. Clin. Oncol. 27, 5693–5699 (2009).

    Article  Google Scholar 

  33. Haupt, H. M., Rosen, P. P. & Kinne, D. W. Breast carcinoma presenting with axillary lymph node metastases. An analysis of specific histopathologic features. Am. J. Surg. Pathol. 9, 165–175 (1985).

    Article  CAS  Google Scholar 

  34. Wicha, M. S., Liu, S. & Dontu, G. Cancer stem cells: an old idea--a paradigm shift. Cancer Res. 66, 1883–1890 (2006).

    Article  CAS  Google Scholar 

  35. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumors: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    Article  CAS  Google Scholar 

  36. Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

    Article  CAS  Google Scholar 

  37. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 1 33, 704–715 (2008).

    Article  Google Scholar 

  38. Honeth, G. et al. The CD44+/CD24- phenotype is enriched in basal-like tumors. Breast Cancer Res. 10, R53 (2008).

    Article  Google Scholar 

  39. Wright, M. H. et al. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with stem cell characteristics. Breast Cancer Res. 10, R10 (2008).

    Article  Google Scholar 

  40. Pece, S. et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer cell stem content. Cell 140, 62–73 (2010).

    Article  CAS  Google Scholar 

  41. Lim, E. et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med. 15, 907–913 (2009).

    Article  CAS  Google Scholar 

  42. Weigelt, B., Peterse, J. L. & van't Veer, L. J. Breast cancer metastasis: markers and models. Nat. Rev. Cancer 5, 591–602 (2005).

    Article  CAS  Google Scholar 

  43. Natrajan, R. et al. An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res. Treat. doi: 10.1007/s10549-009-0501–3.

  44. Holstege, H. et al. High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer. Cancer Res. 69, 3625–3633 (2009).

    Article  CAS  Google Scholar 

  45. Natrajan, R. et al. Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin. Cancer Res. 15, 2711–2722 (2009).

    Article  CAS  Google Scholar 

  46. Chin, K. et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529–541 (2006).

    Article  CAS  Google Scholar 

  47. Adélaïde, J. et al. Integrated profiling of basal and luminal breast cancers. Cancer Res. 67, 11565–11575 (2007).

    Article  Google Scholar 

  48. Stephens, P. J. et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462, 1005–1010 (2009).

    Article  CAS  Google Scholar 

  49. Cicalese, A. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009).

    Article  CAS  Google Scholar 

  50. Carey, L. A. et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492–2502 (2006).

    Article  CAS  Google Scholar 

  51. Tilanus-Linthorst, M. et al. A BRCA1/2 mutation, high breast density and prominent pushing margins of a tumor independently contribute to a frequent false-negative mammography. Int. J. Cancer 102, 91–95 (2002).

    Article  CAS  Google Scholar 

  52. Evans, A. J. et al. Basal phenotype: a powerful prognostic factor in small screen-detected invasive breast cancer with long-term follow-up. J. Med. Screen. 14, 210–214 (2007).

    Article  CAS  Google Scholar 

  53. Robson, M. E. et al. A combined analysis of outcome following breast cancer: differences in survival based on BRCA1/BRCA2 mutation status and administration of adjuvant treatment. Breast Cancer Res. 6, R8–R17 (2004).

    Article  CAS  Google Scholar 

  54. Kriege, M. et al. Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. J. Clin. Oncol. 27, 3764–3771 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

W. D. Foulkes and S. A. Narod are funded by the Canadian Breast Cancer Research Alliance. J. S. Reis-Filho is funded by Breakthrough Breast Cancer, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Foulkes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foulkes, W., Reis-Filho, J. & Narod, S. Tumor size and survival in breast cancer—a reappraisal. Nat Rev Clin Oncol 7, 348–353 (2010). https://doi.org/10.1038/nrclinonc.2010.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.39

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer