Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PET–CT for radiotherapy treatment planning and response monitoring in solid tumors

Abstract

PET imaging has evolved as an indispensible tool for staging in oncology. Multiple quantitative measurements can be performed, enabling the effects of treatment to be monitored before changes are detectable with the use of conventional imaging modalities. PET tracers are available to visualize and quantify the most important mechanisms of resistance to radiotherapy and chemoradiotherapy. Reproducibility of these tracers depends on the particular tracer and the underlying biology of the process that is being investigated. PET enables clinicians to select patients for intensified treatment on the basis of resistance mechanisms taking place at the molecular level. From translational studies and randomized trials, it has become clear that appropriate patient selection can prevent unnecessary rejection of various treatment options through the observation of individual patients rather than only looking at the results of a large study population.

Key Points

  • PET tracers are available for visualization and quantification of the most important mechanisms involved in resistance to radiotherapy and chemoradiotherapy

  • PET combined with [18F]-fluorodeoxyglucose ([18F]-FDG) as a metabolic marker is more powerful than for staging alone, and it can be used for treatment selection based on quantifying the intensity of [18F]-FDG uptake

  • Monitoring early response when using highly effective but more-toxic regimens, such as concomitant chemoradiotherapy, probably necessitates earlier rescanning than when using chemotherapy or radiotherapy alone

  • The predictive value of [18F]-fluoromisonidazole-PET is indicated by the fact that, on the basis of using this tracer, the number of recurrent tumors can be reduced by specifically targeting hypoxic tumor cells

  • The role for [18F]-fluorothymidine-PET imaging in oncology is in the identification of resistant tumor subvolumes and the possibility to monitor early treatment response rather than in tumor staging

  • If patient selection for specific trials is not improved, treatment modalities might be disregarded if no benefit is observed in the study population as a whole

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Squamous-cell carcinoma of the lung with a pathological lymph node.
Figure 2: Squamous-cell carcinoma of the supraglottic larynx.

Similar content being viewed by others

References

  1. Gwyther, S. J. Modern techniques in radiological imaging related to oncology. Ann. Oncol. 5 (Suppl. 4), 3–7 (1994).

    PubMed  Google Scholar 

  2. Bourhis, J. et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet 368, 843–854 (2006).

    PubMed  Google Scholar 

  3. Forastiere, A. A. et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N. Engl. J. Med. 349, 2091–2098 (2003).

    CAS  PubMed  Google Scholar 

  4. Saunders, M. et al. Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steering Committee. Lancet 350, 161–165 (1997).

    CAS  PubMed  Google Scholar 

  5. Overgaard, J. Hypoxic radiosensitization: adored and ignored. J. Clin. Oncol. 25, 4066–4074 (2007).

    PubMed  Google Scholar 

  6. Mandrekar, S. J. & Sargent, D. J. Predictive biomarker validation in practice: lessons from real trials. Clin. Trials 7, 567–573 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Kaanders, J. H. A. M., Bussink, J. & van der Kogel, A. J. ARCON: a novel biology-based approach in radiotherapy. Lancet Oncol. 3, 728–737 (2002).

    PubMed  Google Scholar 

  8. Bremnes, R. M., Camps, C. & Sirera, R. Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer 51, 143–158 (2006).

    PubMed  Google Scholar 

  9. Poon, R. T., Fan, S. T. & Wong, J. Clinical significance of angiogenesis in gastrointestinal cancers: a target for novel prognostic and therapeutic approaches. Ann. Surg. 238, 9–28 (2003).

    PubMed  PubMed Central  Google Scholar 

  10. Hasan, J., Byers, R. & Jayson, G. C. Intra-tumoural microvessel density in human solid tumours. Br. J. Cancer 86, 1566–1577 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fitzgibbons, P. L. et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch. Pathol. Lab. Med. 124, 966–978 (2000).

    CAS  PubMed  Google Scholar 

  12. Span, P. N., Bussink, J., De Mulder, P. H. & Sweep, F. C. Carbonic anhydrase IX expression is more predictive than prognostic in breast cancer. Br. J. Cancer 96, 1309 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mac Manus, M. & Hicks, R. J. The use of positron emission tomography (PET) in the staging/evaluation, treatment, and follow-up of patients with lung cancer: a critical review. Int. J. Radiat. Oncol. Biol. Phys. 72, 1298–1306 (2008).

    PubMed  Google Scholar 

  14. Bussink, J., van Herpen, C. M., Kaanders, J. H. A. M. & Oyen, W. J. PET-CT for response assessment and treatment adaptation in head and neck cancer. Lancet Oncol. 11, 661–669 (2010).

    PubMed  Google Scholar 

  15. Schinagl, D. A. et al. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 69, 1282–1289 (2007).

    CAS  PubMed  Google Scholar 

  16. Joiner, M. & van der Kogel, A. (Eds) Basic Clinical Radiobiology 4th edn (Hodder Arnold, London, 2009).

  17. Withers, H. R., Taylor, J. M. & Maciejewski, B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 27, 131–146 (1988).

    CAS  PubMed  Google Scholar 

  18. Saunders, M. et al. Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial. CHART Steering committee. Radiother. Oncol. 52, 137–148 (1999).

    CAS  PubMed  Google Scholar 

  19. Saunders, M. I., Rojas, A. M., Parmar, M. K., Dische, S. & CHART Trial Collaborators. Mature results of a randomized trial of accelerated hyperfractionated versus conventional radiotherapy in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 77, 3–8 (2010).

    PubMed  Google Scholar 

  20. Rojas, A., Joiner, M. C. & Denekamp, J. Extrapolations from laboratory and preclinical studies for the use of carbogen and nicotinamide in radiotherapy. Radiother. Oncol. 24, 123–124 (1992).

    CAS  PubMed  Google Scholar 

  21. Bussink, J., Kaanders, J. H. A. M. & van der Kogel, A. J. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother. Oncol. 67, 3–15 (2003).

    PubMed  Google Scholar 

  22. Overgaard, J. et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother. Oncol. 46, 135–146 (1998).

    CAS  PubMed  Google Scholar 

  23. Rischin, D. et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol. 24, 2098–2104 (2006).

    PubMed  Google Scholar 

  24. Pignon, J. P., le Maître, A., Maillard, E., Bourhis, J. & MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother. Oncol. 92, 4–14 (2009).

    PubMed  Google Scholar 

  25. Pijls-Johannesma, M. et al. A systematic methodology review of phase I radiation dose escalation trials. Radiother. Oncol. 95, 135–141 (2010).

    PubMed  Google Scholar 

  26. O'Driscoll, M. & Jeggo, P. A. The role of double-strand break repair—insights from human genetics. Nat. Rev. Genet. 7, 45–54 (2006).

    CAS  PubMed  Google Scholar 

  27. Chalmers, A. J., Lakshman, M., Chan, N. & Bristow, R. G. Poly(ADP-ribose) polymerase inhibition as a model for synthetic lethality in developing radiation oncology targets. Semin. Radiat. Oncol. 20, 274–281 (2010).

    PubMed  Google Scholar 

  28. Mukherjee, B., Choy, H., Nirodi, C. & Burma, S. Targeting nonhomologous end-joining through epidermal growth factor receptor inhibition: rationale and strategies for radiosensitization. Semin. Radiat. Oncol. 20, 250–257 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Plummer, R. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin. Cancer Res. 16, 4527–4531 (2010).

    CAS  PubMed  Google Scholar 

  30. Capdevila, J. et al. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat. Rev. 35, 354–363 (2009).

    CAS  PubMed  Google Scholar 

  31. Zips, D. et al. Epidermal growth factor receptor inhibitors for radiotherapy: biological rationale and preclinical results. J. Pharm. Pharmacol. 60, 1019–1028 (2008).

    CAS  PubMed  Google Scholar 

  32. Krause, M. et al. Decreased repopulation as well as increased reoxygenation contribute to the improvement in local control after targeting of the EGFR by C225 during fractionated irradiation. Radiother. Oncol. 76, 162–167 (2005).

    CAS  PubMed  Google Scholar 

  33. Bussink, J., Kaanders, J. H. & van der Kogel, A. J. Microenvironmental transformations by VEGF- and EGF-receptor inhibition and potential implications for responsiveness to radiotherapy. Radiother. Oncol. 82, 10–17 (2007).

    CAS  PubMed  Google Scholar 

  34. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    CAS  PubMed  Google Scholar 

  35. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  36. Busk, M. et al. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur. J. Nucl. Med. Mol. Imaging 35, 2294–2303 (2008).

    CAS  PubMed  Google Scholar 

  37. Pugachev, A. et al. Dependence of FDG uptake on tumor microenvironment. Int. J. Radiat. Oncol. Biol. Phys. 62, 545–553 (2005).

    CAS  PubMed  Google Scholar 

  38. Christian, N. et al. Is 18F-FDG a surrogate tracer to measure tumor hypoxia? Comparison with the hypoxic tracer 14C-EF3 in animal tumor models. Radiother. Oncol. 97, 183–188 (2010).

    CAS  PubMed  Google Scholar 

  39. Arriagada, R. et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet 375, 1267–1277 (2010).

    CAS  PubMed  Google Scholar 

  40. Aupérin, A. et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 2181–2190 (2010).

    PubMed  Google Scholar 

  41. Kidd, E. A., Siegel, B. A., Dehdashti, F. & Grigsby, P. W. Pelvic lymph node F-18 fluorodeoxyglucose uptake as a prognostic biomarker in newly diagnosed patients with locally advanced cervical cancer. Cancer 116, 1469–1475 (2010).

    PubMed  Google Scholar 

  42. Sasaki, R. et al. [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J. Clin. Oncol. 23, 1136–1143 (2005).

    CAS  PubMed  Google Scholar 

  43. Benz, M. R. et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin. Cancer Res. 15, 2856–2863 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weber, W. A. et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J. Clin. Oncol. 19, 3058–3065 (2001).

    CAS  PubMed  Google Scholar 

  45. Schmidt, M. et al. Mean and maximum standardized uptake values in [18F]FDG-PET for assessment of histopathological response in oesophageal squamous cell carcinoma or adenocarcinoma after radiochemotherapy. Eur. J. Nucl. Med. Mol. Imaging 36, 735–744 (2009).

    CAS  PubMed  Google Scholar 

  46. Jingu, K. et al. Focal dose escalation using FDG-PET-guided intensity-modulated radiation therapy boost for postoperative local recurrent rectal cancer: a planning study with comparison of DVH and NTCP. BMC Cancer 10, 127 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. De Ruysscher, D. & Kirsch, C. M. PET scans in radiotherapy planning of lung cancer. Radiother. Oncol. 96, 335–338 (2010).

    PubMed  Google Scholar 

  48. Madani, I. et al. Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 68, 126–135 (2007).

    PubMed  Google Scholar 

  49. Lordick, F. et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 8, 797–805 (2007).

    PubMed  Google Scholar 

  50. Hoekstra, C. J. et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J. Clin. Oncol. 23, 8362–8370 (2005).

    PubMed  Google Scholar 

  51. Janssen, M. H. et al. Evaluation of early metabolic responses in rectal cancer during combined radiochemotherapy or radiotherapy alone: sequential FDG-PET-CT findings. Radiother. Oncol. 94, 151–155 (2010).

    PubMed  Google Scholar 

  52. Oyen, W. J. & van der Graaf, W. T. Molecular imaging of solid tumors: exploiting the potential. Nat. Rev. Clin. Oncol. 6, 609–611 (2009).

    PubMed  Google Scholar 

  53. Nunn, A., Linder, K. & Strauss, H. W. Nitroimidazoles and imaging hypoxia. Eur. J. Nucl. Med. 22, 265–280 (1995).

    CAS  PubMed  Google Scholar 

  54. Krohn, K. A., Link, J. M. & Mason, R. P. Molecular imaging of hypoxia. J. Nucl. Med. 49 (Suppl. 2), 129S–148S (2008).

    CAS  PubMed  Google Scholar 

  55. Arteel, G. E., Thurman, R. G., Yates, J. M. & Raleigh, J. A. Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br. J. Cancer 72, 889–895 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Koch, C. J., Evans, S. M. & Lord, E. M. Oxygen dependence of cellular uptake of EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide]: analysis of drug adducts by fluorescent antibodies vs bound radioactivity. Br. J. Cancer 72, 869–874 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gross, M. W., Karbach, U., Groebe, K., Franko, A. J. & Mueller-Klieser, W. Calibration of misonidazole labeling by simultaneous measurement of oxygen tension and labeling density in multicellular spheroids. Int. J. Cancer 61, 567–573 (1995).

    CAS  PubMed  Google Scholar 

  58. Chapman, J. D., Franko, A. J. & Sharplin, J. A marker for hypoxic cells in tumours with potential clinical applicability. Br. J. Cancer 43, 546–550 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Urtasun, R. C., Chapman, J. D., Raleigh, J. A., Franko, A. J. & Koch, C. J. Binding of 3H-misonidazole to solid human tumors as a measure of tumor hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 12, 1263–1267 (1986).

    CAS  PubMed  Google Scholar 

  60. Koh, W. J. et al. Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int. J. Radiat. Oncol. Biol. Phys. 33, 391–398 (1995).

    CAS  PubMed  Google Scholar 

  61. Eschmann, S. M. et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J. Nucl. Med. 46, 253–260 (2005).

    PubMed  Google Scholar 

  62. Ljungkvist, A. S., Bussink, J., Kaanders, J. H. A. M. & van der Kogel, A. J. Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat. Res. 167, 127–145 (2007).

    CAS  PubMed  Google Scholar 

  63. Rademakers, S. E. et al. Molecular aspects of tumour hypoxia. Mol. Oncol. 2, 41–53 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown, J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br. J. Radiol. 52, 650–656 (1979).

    CAS  PubMed  Google Scholar 

  66. Ljungkvist, A. S. et al. Hypoxic cell turnover in different solid tumor lines. Int. J. Radiat. Oncol. Biol. Phys. 62, 1157–1168 (2005).

    PubMed  Google Scholar 

  67. Nehmeh, S. A. et al. Reproducibility of intratumor distribution of 18F-fluoromisonidazole in head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 235–242 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaanders, J. H. A. M. et al. Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res. 62, 7066–7074 (2002).

    CAS  PubMed  Google Scholar 

  69. Rischin, D. et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J. Clin. Oncol. 28, 2989–2995 (2010).

    CAS  PubMed  Google Scholar 

  70. Lee, N. et al. Prospective trial incorporating pre-/mid-treatment [18F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 75, 101–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rasey, J. S., Grierson, J. R., Wiens, L. W., Kolb, P. D. & Schwartz, J. L. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J. Nucl. Med. 43, 1210–1217 (2002).

    CAS  PubMed  Google Scholar 

  72. Shields, A. F. et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 4, 1334–1336 (1998).

    CAS  PubMed  Google Scholar 

  73. de Langen, A. J. et al. Reproducibility of quantitative 18F-3′-deoxy-3′-fluorothymidine measurements using positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 36, 389–395 (2009).

    PubMed  Google Scholar 

  74. Thorwarth, D., Eschmann, S. M., Paulsen, F. & Alber, M. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys. Med. Biol. 50, 2209–2224 (2005).

    PubMed  Google Scholar 

  75. Troost, E. G. et al. Histopathologic validation of 3′-deoxy-3′-18F-fluorothymidine PET in squamous cell carcinoma of the oral cavity. J. Nucl. Med. 51, 713–719 (2010).

    PubMed  Google Scholar 

  76. Troost, E. G. et al. 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J. Nucl. Med. 48, 726–735 (2007).

    PubMed  Google Scholar 

  77. Begg, A. C. et al. The value of pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head and neck cancer: a multicenter analysis. Radiother. Oncol. 50, 13–23 (1999).

    CAS  PubMed  Google Scholar 

  78. De Ruysscher, D. et al. Time between the first day of chemotherapy and the last day of chest radiation is the most important predictor of survival in limited-disease small-cell lung cancer. J. Clin. Oncol. 24, 1057–1063 (2006).

    PubMed  Google Scholar 

  79. Chen, W. et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J. Nucl. Med. 46, 945–952 (2005).

    CAS  PubMed  Google Scholar 

  80. Schiepers, C. et al. Kinetics of 3′-deoxy-3′-18F-fluorothymidine during treatment monitoring of recurrent high-grade glioma. J. Nucl. Med. 51, 720–727 (2010).

    PubMed  Google Scholar 

  81. Wieder, H. A. et al. PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur. J. Nucl. Med. Mol. Imaging 34, 878–883 (2007).

    CAS  PubMed  Google Scholar 

  82. Herrmann, K. et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin's lymphoma. Clin. Cancer Res. 13, 3552–3558 (2007).

    CAS  PubMed  Google Scholar 

  83. Kenny, L. et al. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 34, 1339–1347 (2007).

    PubMed  Google Scholar 

  84. Pio, B. S. et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol. Imaging Biol. 8, 36–42 (2006).

    PubMed  Google Scholar 

  85. Moule, R. N. et al. The potential advantages of 18FDG PET/CT-based target volume delineation in radiotherapy planning of head and neck cancer. Radiother. Oncol. 97, 189–193 (2010).

    PubMed  Google Scholar 

  86. Muijs, C. T. et al. A systematic review on the role of FDG-PET/CT in tumour delineation and radiotherapy planning in patients with esophageal cancer. Radiother. Oncol. 97, 165–171 (2010).

    PubMed  Google Scholar 

  87. Vinod, S. K., Kumar, S., Holloway, L. C. & Shafiq, J. Dosimetric implications of the addition of 18 fluorodeoxyglucose-positron emission tomography in CT-based radiotherapy planning for non-small-cell lung cancer. J. Med. Imaging Radiat. Oncol. 54, 152–160 (2010).

    CAS  PubMed  Google Scholar 

  88. Pommier, P. et al. Impact of 18F-fluoro-2-deoxyglucose positron emission tomography on treatment strategy and radiotherapy planning for stage I-II Hodgkin disease: a prospective multicenter study. Int. J. Radiat. Oncol. Biol. Phys. doi:10.1016/j.ijrobp.2009.11.048.

    Google Scholar 

  89. MacManus, M. et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother. Oncol. 91, 85–94 (2009).

    PubMed  Google Scholar 

  90. Krengli, M. et al. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma. Radiat. Oncol. 5, 10 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Petit, S. F. et al. Metabolic control probability in tumour subvolumes or how to guide tumour dose redistribution in non-small cell lung cancer (NSCLC): an exploratory clinical study. Radiother. Oncol. 91, 393–398 (2009).

    PubMed  Google Scholar 

  92. Schinagl, D. A. et al. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother. Oncol. 91, 95–100 (2009).

    PubMed  Google Scholar 

  93. Ford, E. C. et al. Comparison of FDG-PET/CT and CT for delineation of lumpectomy cavity for partial breast irradiation. Int. J. Radiat. Oncol. Biol. Phys. 71, 595–602 (2008).

    PubMed  Google Scholar 

  94. van Loon, J. et al. 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother. Oncol. 87, 49–54 (2008).

    PubMed  Google Scholar 

  95. Geets, X. et al. Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother. Oncol. 85, 105–115 (2007).

    PubMed  Google Scholar 

  96. Grégoire, V., Haustermans, K., Geets, X., Roels, S. & Lonneux, M. PET-based treatment planning in radiotherapy: a new standard? J. Nucl. Med. 48 (Suppl. 1), 68S–77S (2007).

    PubMed  Google Scholar 

  97. Fernandes, A. T. et al. Elective nodal irradiation (ENI) vs involved field radiotherapy (IFRT) for locally advanced non-small cell lung cancer (NSCLC): a comparative analysis of toxicities and clinical outcomes. Radiother. Oncol. 95, 178–184 (2010).

    PubMed  Google Scholar 

  98. van Loon, J. et al. Selective nodal irradiation on basis of 18FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int. J. Radiat. Oncol. Biol. Phys. 77, 329–336 (2010).

    PubMed  Google Scholar 

  99. Aerts, H. J. et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy 18Fluorodeoxyglucose-PET-CT scan. Radiother. Oncol. 91, 386–392 (2009).

    PubMed  PubMed Central  Google Scholar 

  100. Bentzen, S. M. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 6, 112–117 (2005).

    PubMed  Google Scholar 

  101. Grosu, A. L. et al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 69, 541–551 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L. Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

J. Bussink researched data to include in the manuscript and all the authors contributed to discussion of content for the article, wrote, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to Johan Bussink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussink, J., Kaanders, J., van der Graaf, W. et al. PET–CT for radiotherapy treatment planning and response monitoring in solid tumors. Nat Rev Clin Oncol 8, 233–242 (2011). https://doi.org/10.1038/nrclinonc.2010.218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.218

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer