Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Monocytes and macrophages in abdominal aortic aneurysm

Key Points

  • Most of the macrophages that accumulate in the aneurysmal aortic wall originate from circulating monocytes; however, some macrophages in abdominal aortic aneurysms (AAAs) might originate from aortic tissue-resident macrophages

  • The main factors involved in macrophage accumulation in the AAA wall include chemokines and cytokines produced in response to tissue injury, products of extracellular matrix degradation, and microenvironmental conditions

  • Monocytes and macrophages have distinct phenotypes during the development and progression of AAA, with major implications for monocyte and macrophage activation and biological functions in AAA

  • Macrophages have both pathogenic and reparative roles in AAA through their involvement in extracellular matrix remodelling, in promotion and resolution of inflammation, and in various aspects of the tissue-healing response

  • State-of-the-art translational applications are available that can be improved and harnessed for the use of monocytes and macrophages as diagnostic and prognostic biomarkers, and as therapeutic targets in AAA

Abstract

Abdominal aortic aneurysm (AAA) is a life-threatening disease associated with high morbidity, and high mortality in the event of aortic rupture. Major advances in open surgical and endovascular repair of AAA have been achieved during the past 2 decades. However, drug-based therapies are still lacking, highlighting a real need for better understanding of the molecular and cellular mechanisms involved in AAA formation and progression. The main pathological features of AAA include extracellular matrix remodelling associated with degeneration and loss of vascular smooth muscle cells and accumulation and activation of inflammatory cells. The inflammatory process has a crucial role in AAA and substantially influences many determinants of aortic wall remodelling. In this Review, we focus specifically on the involvement of monocytes and macrophages, summarizing current knowledge on the roles, origin, and functions of these cells in AAA development and its complications. Furthermore, we show and propose that distinct monocyte and macrophage subsets have critical and differential roles in initiation, progression, and healing of the aneurysmal process. On the basis of experimental and clinical studies, we review potential translational applications to detect, assess, and image macrophage subsets in AAA, and discuss the relevance of these applications for clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origin of macrophages in the aneurysmal aortic wall.
Figure 2: Role of macrophages in AAA and main factors modulating macrophage activity.
Figure 3: Hypothesized roles of monocyte and macrophage subsets in AAA pathogenesis.

Similar content being viewed by others

References

  1. Nordon, I. M., Hinchliffe, R. J., Loftus, I. M. & Thompson, M. M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol. 8, 92–102 (2011).

    Article  PubMed  Google Scholar 

  2. Golledge, J., Muller, J., Daugherty, A. & Norman, P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler. Thromb. Vasc. Biol. 26, 2605–2613 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Hong, H., Yang, Y., Liu, B. & Cai, W. Imaging of abdominal aortic aneurysm: the present and the future. Curr. Vasc. Pharmacol. 8, 808–819 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Trollope, A., Moxon, J. V., Moran, C. S. & Golledge, J. Animal models of abdominal aortic aneurysm and their role in furthering management of human disease. Cardiovasc. Pathol. 20, 114–123 (2011).

    Article  PubMed  Google Scholar 

  5. Dale, M. A., Ruhlman, M. K. & Baxter, B. T. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy. Arterioscler. Thromb. Vasc. Biol. 35, 1746–1755 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74–e80 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Idzkowska, E. et al. The role of different monocyte subsets in the pathogenesis of atherosclerosis and acute coronary syndromes. Scand. J. Immunol. 82, 163–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, J., Zhang, L., Yu, C., Yang, X. F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wong, K. L. et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118, e16–e31 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Randolph, G. J. The fate of monocytes in atherosclerosis. J. Thromb. Haemost. 7 (Suppl. 1), 28–30 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Dutta, P. & Nahrendorf, M. Regulation and consequences of monocytosis. Immunol. Rev. 262, 167–178 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Drechsler, M., Duchene, J. & Soehnlein, O. Chemokines control mobilization, recruitment, and fate of monocytes in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35, 1050–1055 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Ghigliotti, G. et al. CD16+ monocyte subsets are increased in large abdominal aortic aneurysms and are differentially related with circulating and cell-associated biochemical and inflammatory biomarkers. Dis. Markers 34, 131–142 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rubio-Navarro, A. et al. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm. Int. J. Cardiol. 201, 66–78 (2015).

    Article  PubMed  Google Scholar 

  16. Lamblin, N. et al. Profile of macrophages in human abdominal aortic aneurysms: a transcriptomic, proteomic, and antibody protein array study. J. Proteome Res. 9, 3720–3729 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Moran, C. S. et al. Everolimus limits aortic aneurysm in the apolipoprotein E-deficient mouse by downregulating C-C chemokine receptor 2 positive monocytes. Arterioscler. Thromb. Vasc. Biol. 33, 814–821 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Tsou, C. L. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117, 902–909 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mellak, S. et al. Angiotensin II mobilizes spleen monocytes to promote the development of abdominal aortic aneurysm in Apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 35, 378–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, H. et al. Angiopoietin-2 attenuates angiotensin II-induced aortic aneurysm and atherosclerosis in apolipoprotein E-deficient mice. Sci. Rep. 6, 35190 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Owens, A. P. III et al. MyD88 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation independent of signaling through Toll-like receptors 2 and 4. Arterioscler. Thromb. Vasc. Biol. 31, 2813–2819 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hanna, R. N. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat. Immunol. 12, 778–785 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cui, M. et al. Orphan nuclear receptor Nur77 inhibits angiotensin II-induced vascular remodeling via downregulation of beta-catenin. Hypertension 67, 153–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Hanna, R. N. et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ. Res. 110, 416–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Hamers, A. A. et al. Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ. Res. 110, 428–438 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Thomas, G. D. et al. Deleting an Nr4a1 super-enhancer subdomain ablates Ly6Clow monocytes while preserving macrophage gene function. Immunity 45, 975–987 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Satoh, T. et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541, 96–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tabas, I. & Bornfeldt, K. E. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 118, 653–667 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chinetti-Gbaguidi, G., Colin, S. & Staels, B. Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 12, 10–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Menezes, S. et al. The heterogeneity of Ly6Chi monocytes controls their differentiation into iNOS+ macrophages or monocyte-derived dendritic cells. Immunity 45, 1205–1218 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tieu, B. C. et al. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J. Clin. Invest. 119, 3637–3651 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang, Y. et al. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J. Clin. Invest. 120, 422–432 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Daugherty, A., Manning, M. W. & Cassis, L. A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest. 105, 1605–1612 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Turner, G. H. et al. Assessment of macrophage infiltration in a murine model of abdominal aortic aneurysm. J. Magn. Reson. Imaging 30, 455–460 (2009).

    Article  PubMed  Google Scholar 

  37. Pyo, R. et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 105, 1641–1649 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang, Y. X. et al. Angiotensin II increases urokinase-type plasminogen activator expression and induces aneurysm in the abdominal aorta of apolipoprotein E-deficient mice. Am. J. Pathol. 159, 1455–1464 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Saraff, K., Babamusta, F., Cassis, L. A. & Daugherty, A. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 1621–1626 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Dutertre, C. A. et al. Deciphering the stromal and hematopoietic cell network of the adventitia from non-aneurysmal and aneurysmal human aorta. PLoS ONE 9, e89983 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rao, J. et al. Distinct macrophage phenotype and collagen organization within the intraluminal thrombus of abdominal aortic aneurysm. J. Vasc. Surg. 62, 585–593 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boytard, L. et al. Role of proinflammatory CD68+ mannose receptor macrophages in peroxiredoxin-1 expression and in abdominal aortic aneurysms in humans. Arterioscler. Thromb. Vasc. Biol. 33, 431–438 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Qin, Z. et al. Angiotensin II-induced TLR4 mediated abdominal aortic aneurysm in apolipoprotein E knockout mice is dependent on STAT3. J. Mol. Cell. Cardiol. 87, 160–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Dale, M. A. et al. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization. J. Immunol. 196, 4536–4543 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. Rateri, D. L. et al. Prolonged infusion of angiotensin II in apoE−/− mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm. Am. J. Pathol. 179, 1542–1548 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Moore, J. P. et al. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am. J. Physiol. Heart Circ. Physiol. 309, H906–H917 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Torocsik, D. et al. Factor XIII-A is involved in the regulation of gene expression in alternatively activated human macrophages. Thromb. Haemost. 104, 709–717 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Bakker, E. N. et al. Flow-dependent remodeling of small arteries in mice deficient for tissue-type transglutaminase: possible compensation by macrophage-derived factor XIII. Circ. Res. 99, 86–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, J. et al. CXCR3-dependent accumulation and activation of perivascular macrophages is necessary for homeostatic arterial remodeling to hemodynamic stresses. J. Exp. Med. 207, 1951–1966 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zizzo, G., Hilliard, B. A., Monestier, M. & Cohen, P. L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol. 189, 3508–3520 (2012).

    Article  PubMed  CAS  Google Scholar 

  51. Haskard, D. O., Boyle, J. J., Evans, P. C., Mason, J. C. & Randi, A. M. Cytoprotective signaling and gene expression in endothelial cells and macrophages-lessons for atherosclerosis. Microcirculation 20, 203–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Finn, A. V. et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J. Am. Coll. Cardiol. 59, 166–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Boyle, J. J. et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ. Res. 110, 20–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ensan, S. et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. 17, 159–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Lhotak, S. et al. Characterization of proliferating lesion-resident cells during all stages of atherosclerotic growth. J. Am. Heart Assoc. 5, e003945 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Woollard, K. J. & Geissmann, F. Monocytes in atherosclerosis: subsets and functions. Nat. Rev. Cardiol. 7, 77–86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Michineau, S. et al. Chemokine (C-X-C motif) receptor 4 blockade by AMD3100 inhibits experimental abdominal aortic aneurysm expansion through anti-inflammatory effects. Arterioscler. Thromb. Vasc. Biol. 34, 1747–1755 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Nahrendorf, M. et al. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler. Thromb. Vasc. Biol. 31, 750–757 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang, P. et al. Smad4 deficiency in smooth muscle cells initiates the formation of aortic aneurysm. Circ. Res. 118, 388–399 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Tan, C. K. et al. SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. J. Am. Heart Assoc. 2, e000269 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Babamusta, F. et al. Angiotensin II infusion induces site-specific intra-laminar hemorrhage in macrophage colony-stimulating factor-deficient mice. Atherosclerosis 186, 282–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Combadiere, C. et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6Chi and Ly6Clo monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117, 1649–1657 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Ishibashi, M. et al. Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler. Thromb. Vasc. Biol. 24, e174–e178 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Tieu, B. C. et al. Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling. J. Vasc. Res. 48, 261–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Moehle, C. W. et al. Bone marrow-derived MCP1 required for experimental aortic aneurysm formation and smooth muscle phenotypic modulation. J. Thorac. Cardiovasc. Surg. 142, 1567–1574 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Iida, Y. et al. Peptide inhibitor of CXCL4-CCL5 heterodimer formation, MKEY, inhibits experimental aortic aneurysm initiation and progression. Arterioscler. Thromb. Vasc. Biol. 33, 718–726 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. MacTaggart, J. N., Xiong, W., Knispel, R. & Baxter, B. T. Deletion of CCR2 but not CCR5 or CXCR3 inhibits aortic aneurysm formation. Surgery 142, 284–288 (2007).

    Article  PubMed  Google Scholar 

  72. Kehrl, J. H. Heterotrimeric G protein signaling: roles in immune function and fine-tuning by RGS proteins. Immunity 8, 1–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Patel, J. et al. RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling. Nat. Commun. 6, 6614 (2015).

    Article  PubMed  CAS  Google Scholar 

  74. Ley, K. The role of selectins in inflammation and disease. Trends Mol. Med. 9, 263–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Hannawa, K. K. et al. L-selectin-mediated neutrophil recruitment in experimental rodent aneurysm formation. Circulation 112, 241–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Soehnlein, O., Lindbom, L. & Weber, C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 114, 4613–4623 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Norman, P. E. & Curci, J. A. Understanding the effects of tobacco smoke on the pathogenesis of aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 33, 1473–1477 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Harrison, D. G. et al. Inflammation, immunity, and hypertension. Hypertension 57, 132–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Hance, K. A., Tataria, M., Ziporin, S. J., Lee, J. K. & Thompson, R. W. Monocyte chemotactic activity in human abdominal aortic aneurysms: role of elastin degradation peptides and the 67-kD cell surface elastin receptor. J. Vasc. Surg. 35, 254–261 (2002).

    Article  PubMed  Google Scholar 

  80. Bruemmer, D. et al. Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J. Clin. Invest. 112, 1318–1331 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Liu, Z. et al. Thrombospondin-1 (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm. Circ. Res. 117, 129–141 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gong, Y., Hart, E., Shchurin, A. & Hoover-Plow, J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J. Clin. Invest. 118, 3012–3024 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sho, E. et al. Hemodynamic forces regulate mural macrophage infiltration in experimental aortic aneurysms. Exp. Mol. Pathol. 76, 108–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Golledge, J., Clancy, P., Jamrozik, K. & Norman, P. E. Obesity, adipokines, and abdominal aortic aneurysm: Health in Men study. Circulation 116, 2275–2279 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Thanassoulis, G. et al. Periaortic adipose tissue and aortic dimensions in the Framingham Heart Study. J. Am. Heart Assoc. 1, e000885 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Police, S. B., Thatcher, S. E., Charnigo, R., Daugherty, A. & Cassis, L. A. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 29, 1458–1464 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Blomkalns, A. L. et al. CD14 directs adventitial macrophage precursor recruitment: role in early abdominal aortic aneurysm formation. J. Am. Heart Assoc. 2, e000065 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang, K. C. et al. Membrane-bound thrombomodulin regulates macrophage inflammation in abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 35, 2412–2422 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Samadzadeh, K. M. et al. Monocyte activity is linked with abdominal aortic aneurysm diameter. J. Surg. Res. 190, 328–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Longo, G. M. et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J. Clin. Invest. 110, 625–632 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Longo, G. M. et al. MMP-12 has a role in abdominal aortic aneurysms in mice. Surgery 137, 457–462 (2005).

    Article  PubMed  Google Scholar 

  93. Qin, Y. et al. Deficiency of cathepsin S attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Cardiovasc. Res. 96, 401–410 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Eskandari, M. K. et al. Enhanced abdominal aortic aneurysm in TIMP-1-deficient mice. J. Surg. Res. 123, 289–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Curci, J. A., Liao, S., Huffman, M. D., Shapiro, S. D. & Thompson, R. W. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J. Clin. Invest. 102, 1900–1910 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Liu, J. et al. Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184, 302–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Takei, Y., Tanaka, T., Kent, K. C. & Yamanouchi, D. Osteoclastogenic differentiation of macrophages in the development of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 36, 1962–1971 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Findeisen, H. M. et al. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 31, 253–260 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Ma, D. et al. Inhibition of KLF5-Myo9b-RhoA pathway-mediated podosome formation in macrophages ameliorates abdominal aortic aneurysm. Circ. Res. 120, 799–815 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Shimizu, K., Mitchell, R. N. & Libby, P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 26, 987–994 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Mallat, Z. Macrophages. Arterioscler. Thromb. Vasc. Biol. 34, 2509–2519 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Arango Duque, G. & Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5, 491 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Anzai, A. et al. Adventitial CXCL1/G-CSF expression in response to acute aortic dissection triggers local neutrophil recruitment and activation leading to aortic rupture. Circ. Res. 116, 612–623 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Usui, F. et al. Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 35, 127–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Johnston, W. F. et al. Genetic and pharmacologic disruption of interleukin-1beta signaling inhibits experimental aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 33, 294–304 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Xiong, W. et al. Blocking TNF-alpha attenuates aneurysm formation in a murine model. J. Immunol. 183, 2741–2746 (2009).

    Article  PubMed  CAS  Google Scholar 

  108. Ju, X. et al. Interleukin-6-signal transducer and activator of transcription-3 signaling mediates aortic dissections induced by angiotensin II via the T-helper lymphocyte 17-interleukin 17 axis in C57BL/6 mice. Arterioscler. Thromb. Vasc. Biol. 33, 1612–1621 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Ait-Oufella, H. et al. Natural regulatory T cells limit angiotensin II-induced aneurysm formation and rupture in mice. Arterioscler. Thromb. Vasc. Biol. 33, 2374–2379 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Vucevic, D. et al. Inverse production of IL-6 and IL-10 by abdominal aortic aneurysm explant tissues in culture. Cardiovasc. Pathol. 21, 482–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Date, D. et al. Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization. J. Biol. Chem. 289, 10318–10329 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Son, B. K. et al. Granulocyte macrophage colony-stimulating factor is required for aortic dissection/intramural haematoma. Nat. Commun. 6, 6994 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Tazume, H. et al. Macrophage-derived angiopoietin-like protein 2 accelerates development of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 32, 1400–1409 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Hwang, J. S. et al. PPARdelta reduces abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice by regulating extracellular matrix homeostasis and inflammatory responses. Int. J. Cardiol. 174, 43–50 (2014).

    Article  PubMed  Google Scholar 

  115. Oller, J. et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat. Med. 23, 200–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, J. et al. Inducible nitric oxide synthase is present in human abdominal aortic aneurysm and promotes oxidative vascular injury. J. Vasc. Surg. 38, 360–367 (2003).

    Article  PubMed  Google Scholar 

  117. Lee, J. K., Borhani, M., Ennis, T. L., Upchurch, G. R. Jr & Thompson, R. W. Experimental abdominal aortic aneurysms in mice lacking expression of inducible nitric oxide synthase. Arterioscler. Thromb. Vasc. Biol. 21, 1393–1401 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Johanning, J. M., Franklin, D. P., Han, D. C., Carey, D. J. & Elmore, J. R. Inhibition of inducible nitric oxide synthase limits nitric oxide production and experimental aneurysm expansion. J. Vasc. Surg. 33, 579–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Armstrong, P. J., Franklin, D. P., Carey, D. J. & Elmore, J. R. Suppression of experimental aortic aneurysms: comparison of inducible nitric oxide synthase and cyclooxygenase inhibitors. Ann. Vasc. Surg. 19, 248–257 (2005).

    Article  PubMed  Google Scholar 

  120. Kossmann, S. et al. Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J. Biol. Chem. 289, 27540–27550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Rifkind, J. M., Mohanty, J. G. & Nagababu, E. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front. Physiol. 5, 500 (2014).

    PubMed  Google Scholar 

  122. Keaney, J. F. Jr. Oxidative stress and the vascular wall: NADPH oxidases take center stage. Circulation 112, 2585–2588 (2005).

    Article  PubMed  Google Scholar 

  123. Thomas, M. et al. Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation 114, 404–413 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kigawa, Y. et al. NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice. Arterioscler. Thromb. Vasc. Biol. 34, 2413–2420 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Sharma, A. K. et al. Mesenchymal stem cells attenuate NADPH oxidase-dependent high mobility group box 1 production and inhibit abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 36, 908–918 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Henson, P. M., Bratton, D. L. & Fadok, V. A. Apoptotic cell removal. Curr. Biol. 11, R795–R805 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Kojima, Y. et al. Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J. Clin. Invest. 124, 1083–1097 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Wan, E. et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res. 113, 1004–1012 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Howangyin, K. Y. et al. Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor. Circulation 133, 826–839 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. He, H. et al. Perivascular macrophages limit permeability. Arterioscler. Thromb. Vasc. Biol. 36, 2203–2212 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Mallat, Z., Tedgui, A. & Henrion, D. Role of microvascular tone and extracellular matrix contraction in the regulation of interstitial fluid: implications for aortic dissection. Arterioscler. Thromb. Vasc. Biol. 36, 1742–1747 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Golestani, R. & Sadeghi, M. M. Emergence of molecular imaging of aortic aneurysm: implications for risk stratification and management. J. Nucl. Cardiol. 21, 251–267 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Jalalzadeh, H. et al. Inflammation as a predictor of abdominal aortic aneurysm growth and rupture: a systematic review of imaging biomarkers. Eur. J. Vasc. Endovasc. Surg. 52, 333–342 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Huang, Y. et al. High structural stress and presence of intraluminal thrombus predict abdominal aortic aneurysm 18F-FDG uptake: insights from biomechanics. Circ. Cardiovasc. Imaging 9, e004656 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Richards, J. M. et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ. Cardiovasc. Imaging 4, 274–281 (2011).

    Article  PubMed  Google Scholar 

  138. McBride, O. M. et al. Positron emission tomography and magnetic resonance imaging of cellular inflammation in patients with abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 51, 518–526 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Rinne, P. et al. Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol. Imaging Biol. 18, 99–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Li, X. et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors. EJNMMI Res. 2, 52 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Pedersen, S. F. et al. 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler. Thromb. Vasc. Biol. 35, 1696–1703 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Keliher, E. J. et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat. Commun. 8, 14064 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. de Waard, V. et al. Systemic MCP1/CCR2 blockade and leukocyte specific MCP1/CCR2 inhibition affect aortic aneurysm formation differently. Atherosclerosis 211, 84–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Leuschner, F. et al. Silencing of CCR2 in myocarditis. Eur. Heart J. 36, 1478–1488 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01736813 (2017).

  147. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02134717 (2016)

  148. Bonvin, P., Power, C. A. & Proudfoot, A. E. Evasins: therapeutic potential of a new family of chemokine-binding proteins from ticks. Front. Immunol. 7, 208 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hennigan, S. & Kavanaugh, A. Interleukin-6 inhibitors in the treatment of rheumatoid arthritis. Ther. Clin. Risk Manag. 4, 767–775 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Harrison, S. C. et al. Interleukin-6 receptor pathways in abdominal aortic aneurysm. Eur. Heart J. 34, 3707–3716 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).

  152. IL6R Genetics Consortium Emerging Risk Factors Collaboration et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02007252 (2016).

  154. Interleukin 1 Genetics Consortium. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 3, 243–253 (2015).

  155. Tsuruda, T. et al. Inhibition of development of abdominal aortic aneurysm by glycolysis restriction. Arterioscler. Thromb. Vasc. Biol. 32, 1410–1417 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Pope, N. H. et al. D-series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization. FASEB J. 30, 4192–4201 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Yodoi, K. et al. Foxp3+ regulatory T cells play a protective role in angiotensin II-induced aortic aneurysm formation in mice. Hypertension 65, 889–895 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Zhou, Y. et al. Regulatory T cells in human and angiotensin II-induced mouse abdominal aortic aneurysms. Cardiovasc. Res. 107, 98–107 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Meng, X. et al. Regulatory T cells prevent angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E knockout mice. Hypertension 64, 875–882 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Alvarez, M. M. et al. Delivery strategies to control inflammatory response: modulating M1-M2 polarization in tissue engineering applications. J. Control. Release 240, 349–363 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Fulop, T. et al. From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17, 147–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Campesi, I., Marino, M., Montella, A., Pais, S. & Franconi, F. Sex differences in estrogen receptor alpha and beta levels and activation status in LPS-stimulated human macrophages. J. Cell. Physiol. 232, 340–345 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Bhatia, A., Sekhon, H. K. & Kaur, G. Sex hormones and immune dimorphism. ScientificWorldJournal 2014, 159150 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Qiu, F. et al. Impacts of cigarette smoking on immune responsiveness: up and down or upside down? Oncotarget 8, 268–284 (2017).

    PubMed  Google Scholar 

  165. Wright, M. D. & Binger, K. J. Macrophage heterogeneity and renin-angiotensin system disorders. Pflugers Arch. 469, 445–454 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Sarov-Blat, L. et al. Predominance of a proinflammatory phenotype in monocyte-derived macrophages from subjects with low plasma HDL-cholesterol. Arterioscler. Thromb. Vasc. Biol. 27, 1115–1122 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Senemaud, J. et al. Translational relevance and recent advances of animal models of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 37, 401–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Jacomelli, J., Summers, L., Stevenson, A., Lees, T. & Earnshaw, J. J. Impact of the first 5 years of a national abdominal aortic aneurysm screening programme. Br. J. Surg. 103, 1125–1131 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Moll, F. L. et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 41 (Suppl. 1), S1–S58 (2011).

    Article  PubMed  Google Scholar 

  170. Brady, A. R. et al. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110, 16–21 (2004).

    Article  PubMed  Google Scholar 

  171. Sweeting, M. J., Thompson, S. G., Brown, L. C., Powell, J. T. & RESCAN collaborators. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br. J. Surg. 99, 655–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Helgadottir, A. et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat. Genet. 40, 217–224 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Gretarsdottir, S. et al. Genome-wide association study identifies a sequence variant within the DAB2IP gene conferring susceptibility to abdominal aortic aneurysm. Nat. Genet. 42, 692–697 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Bown, M. J. et al. Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1. Am. J. Hum. Genet. 89, 619–627 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Jones, G. T. et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ. Res. 120, 341–353 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Patel, R., Sweeting, M. J., Powell, J. T., Greenhalgh, R. M. & EVAR trial investigators. Endovascular versus open repair of abdominal aortic aneurysm in 15-years' follow-up of the UK endovascular aneurysm repair trial 1 (EVAR trial 1): a randomised controlled trial. Lancet 388, 2366–2374 (2016).

    Article  PubMed  Google Scholar 

  177. Azuma, J., Asagami, T., Dalman, R. & Tsao, P. S. Creation of murine experimental abdominal aortic aneurysms with elastase. J. Vis. Exp. http://dx.doi.org/10.3791/1280 (2009).

  178. Wang, Y., Krishna, S. & Golledge, J. The calcium chloride-induced rodent model of abdominal aortic aneurysm. Atherosclerosis 226, 29–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Kurihara, T. et al. Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection. Circulation 126, 3070–3080 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Liu, S. et al. Mineralocorticoid receptor agonists induce mouse aortic aneurysm formation and rupture in the presence of high salt. Arterioscler. Thromb. Vasc. Biol. 33, 1568–1579 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Daugherty, A. & Cassis, L. Angiotensin II and abdominal aortic aneurysms. Curr. Hypertens. Rep. 6, 442–446 (2004).

    Article  PubMed  Google Scholar 

  182. Trachet, B. et al. Ascending aortic aneurysm in angiotensin II-infused mice: formation, progression, and the role of focal dissections. Arterioscler. Thromb. Vasc. Biol. 36, 673–681 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the British Heart Foundation and the European Research Council. We apologise for being unable to discuss all the relevant papers owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

J.R., F.L., and Z.M. researched the data for the article. J.R., F.L., M.C., and Z.M. wrote the article. All authors provided substantial contributions to discussions of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Ziad Mallat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Efferocytosis

Process by which apoptotic cells are removed by phagocytic cells.

Podosomes

Actin-based structures that dynamically protrude from the plasma membrane, and are recognized as prominent sites of attachment to, and degradation of, the extracellular matrix.

Canonical inflammasome pathway

Innate immune system receptors/sensors that promote the maturation of IL-1β through the activation of caspase 1.

High-mobility group protein B1

Nonhistone nuclear protein that regulates gene expression; can be translocated to the cytosol and secreted as a pro-inflammatory mediator through activation of Toll-like receptors or advanced glycosylation end-products receptors.

Matrix crosslinking

Process by which chemical bonds are formed between adjacent molecules composing the matrix.

Somatostatin receptors

G-protein-coupled receptors that are expressed in various tissues including the central nervous system, immune system, and gastrointestinal tissues. Somatostatin receptor type 2 is highly expressed on macrophages that accumulate in inflammatory tissues.

Evasins

Class of chemokine-binding proteins, initially isolated from salivary glands of ticks, that can inhibit chemokine binding to their receptors, and might have either a narrow or a broad binding spectrum.

D-series resolvins

Family of mediators derived from omega-3 essential fatty acid precursors; involved in the resolution phase of inflammation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffort, J., Lareyre, F., Clément, M. et al. Monocytes and macrophages in abdominal aortic aneurysm. Nat Rev Cardiol 14, 457–471 (2017). https://doi.org/10.1038/nrcardio.2017.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing