Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contemporary overview and clinical perspectives of chronic total occlusions

Key Points

  • A chronic total occlusion (CTO) is observed in 14.7% of all coronary angiographies and in 18.4% of patients with coronary artery disease

  • Most patients receive medical treatment without revascularization, owing to the complexity of percutaneous coronary intervention (PCI) for CTO, and the clinical uncertainties regarding those patients who might benefit

  • Successful CTO–PCI can increase quality of life by alleviating symptoms, improve exercise tolerance and left ventricular function, reduce the need for CABG surgery, and improve survival

  • CTO–PCI is indicated when an occluded artery leads to angina, ischaemia, left ventricular dysfunction, and electrical instability, especially when the left anterior descending coronary artery is involved

  • Visible collateral arteries on an angiogram of patients with a CTO does not necessarily indicate an absence of ischaemia; additional evaluation is warranted to assess the need for revascularization

  • Cardiac MRI with pharmacological stress testing, perfusion, and contrast enhancement is the optimal assessment for CTO–PCI indication in patients without severe symptoms or ischaemia

Abstract

Chronic total occlusions (CTOs) are often detected on diagnostic coronary angiograms, but percutaneous coronary intervention (PCI) for CTO is currently infrequently performed owing to high technical difficulty, perceived risk of complications, and a lack of randomized data. However, successful CTO–PCI can significantly increase a patient's quality of life, improve left ventricular function, reduce the need for subsequent CABG surgery, and possibly improve long-term survival. A number of factors must be taken into account for the selection of patients for CTO–PCI, including the extent of ischaemia surrounding the occlusion, the level of myocardial viability, coronary location of the CTO, and probability of procedural success. Moreover, in patients with ST-segment elevation myocardial infarction, a CTO in a noninfarct-related artery might lead to an increase in infarct area, increased end-diastolic left ventricular pressure, and decreased left ventricular function, which are all associated with poor clinical outcomes. In this Review, we provide an overview of the anatomy and histopathology of CTOs, perceived benefits of CTO–PCI, considerations for patient selection for this procedure, and a summary of emerging techniques for CTO–PCI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic total occlusion demonstrating lumen recanalization with small and intermediate neovascular channels (arrows).
Figure 2: CTO of the RCA and left anterior descending coronary artery with well-developed collateral circulation from the left coronary system.
Figure 3: Time-to-event curves for all-cause mortality in patients with SVD, MVD without a CTO, or MVD with a CTO in a non-IRA.
Figure 4: Markers of reperfusion in patients with SVD, MVD without a CTO, or MVD with a CTO.

Similar content being viewed by others

References

  1. Colmenarez, H. J. et al. Efficacy and safety of drug-eluting stents in chronic total coronary occlusion recanalization: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 55, 1854–1866 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Keeley, E. C., Boura, J. A. & Grines, C. L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361, 13–20 (2003).

    Article  PubMed  Google Scholar 

  3. Christofferson, R. D. et al. Effect of chronic total coronary occlusion on treatment strategy. Am. J. Cardiol. 95, 1088–1091 (2005).

    Article  PubMed  Google Scholar 

  4. Fefer, P. et al. Current perspectives on coronary chronic total occlusions: the Canadian Multicenter Chronic Total Occlusions Registry. J. Am. Coll. Cardiol. 59, 991–997 (2012).

    Article  PubMed  Google Scholar 

  5. Jeroudi, O. M. et al. Prevalence and management of coronary chronic total occlusions in a tertiary veterans affairs hospital. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.25264.

  6. Werner, G. S. et al. Chronic total coronary occlusions in patients with stable angina pectoris: impact on therapy and outcome in present day clinical practice. Clin. Res. Cardiol. 98, 435–441 (2009).

    Article  PubMed  Google Scholar 

  7. Grantham, J. A. et al. Chronic total occlusion angioplasty in the United States. JACC Cardiovasc. Interv. 2, 479–486 (2009).

    Article  PubMed  Google Scholar 

  8. Stone, G. W. et al. Percutaneous recanalization of chronically occluded coronary arteries: a consensus document: part I. Circulation 112, 2364–2372 (2005).

    Article  PubMed  Google Scholar 

  9. Betriu, A. et al. Angiographic findings 1 month after myocardial infarction: a prospective study of 259 survivors. Circulation 65, 1099–1105 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Veen, G. et al. Culprit lesion morphology and stenosis severity in the prediction of reocclusion after coronary thrombolysis: angiographic results of the APRICOT study. Antithrombotics in the Prevention of Reocclusion in Coronary Thrombolysis. J. Am. Coll. Cardiol. 22, 1755–1762 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Grines, C. L. et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group. N. Engl. J. Med. 328, 673–679 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Stone, G. W. et al. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N. Engl. J. Med. 346, 957–966 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Habib, G. B. et al. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation 83, 739–746 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Srivatsa, S. S. et al. Histologic correlates of angiographic chronic total coronary artery occlusions: influence of occlusion duration on neovascular channel patterns and intimal plaque composition. J. Am. Coll. Cardiol. 29, 955–963 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Sakakura, K. et al. Comparison of pathology of chronic total occlusion with and without coronary artery bypass graft. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/eht422.

  16. Jaffe, R. et al. Natural history of experimental arterial chronic total occlusions. J. Am. Coll. Cardiol. 53, 1148–1158 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Michael, T. T. et al. Temporal trends of fluoroscopy time and contrast utilization in coronary chronic total occlusion revascularization: Insights from a multicenter United States registry. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.25359.

  18. Werner, G. S. et al. Contemporary success and complication rates of percutaneous coronary intervention for chronic total coronary occlusions: results from the ALKK quality control registry of 2006. EuroIntervention 6, 361–366 (2010).

    Article  PubMed  Google Scholar 

  19. Munce, N. R. et al. Intravascular and extravascular microvessel formation in chronic total occlusions a micro-CT imaging study. JACC Cardiovasc. Imaging 3, 797–805 (2010).

    Article  PubMed  Google Scholar 

  20. Katsuragawa, M., Fujiwara, H., Miyamae, M. & Sasayama, S. Histologic studies in percutaneous transluminal coronary angioplasty for chronic total occlusion: comparison of tapering and abrupt types of occlusion and short and long occluded segments. J. Am. Coll. Cardiol. 21, 604–611 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Sumitsuji, S., Inoue, K., Ochiai, M., Tsuchikane, E. & Ikeno, F. Fundamental wire technique and current standard strategy of percutaneous intervention for chronic total occlusion with histopathological insights. JACC Cardiovasc. Interv. 4, 941–951 (2011).

    Article  PubMed  Google Scholar 

  22. Modarai, B., Burnand, K. G., Sawyer, B. & Smith, A. Endothelial progenitor cells are recruited into resolving venous thrombi. Circulation 111, 2645–2653 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Claessen, B. E. et al. Gender differences in long-term clinical outcomes after percutaneous coronary intervention of chronic total occlusions. J. Invasive Cardiol. 24, 484–488 (2012).

    PubMed  Google Scholar 

  24. Choi, J. H. et al. Frequency of myocardial infarction and its relationship to angiographic collateral flow in territories supplied by chronically occluded coronary arteries. Circulation 127, 703–709 (2013).

    Article  PubMed  Google Scholar 

  25. Grantham, J. A., Jones, P. G., Cannon, L. & Spertus, J. A. Quantifying the early health status benefits of successful chronic total occlusion recanalization: Results from the FlowCardia's Approach to Chronic Total Occlusion Recanalization (FACTOR) Trial. Circ. Cardiovasc. Qual. Outcomes 3, 284–290 (2010).

    Article  PubMed  Google Scholar 

  26. Nombela-Franco, L. et al. Ventricular arrhythmias among implantable cardioverter-defibrillator recipients for primary prevention: impact of chronic total coronary occlusion (VACTO Primary Study). Circ. Arrhythm. Electrophysiol. 5, 147–154 (2012).

    Article  PubMed  Google Scholar 

  27. Opitz, C. F., Finn, P. V., Pfeffer, M. A., Mitchell, G. F. & Pfeffer, J. M. Effects of reperfusion on arrhythmias and death after coronary artery occlusion in the rat: increased electrical stability independent of myocardial salvage. J. Am. Coll. Cardiol. 32, 261–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Khan, M. F., Wendel, C. S., Thai, H. M. & Movahed, M. R. Effects of percutaneous revascularization of chronic total occlusions on clinical outcomes: a meta-analysis comparing successful versus failed percutaneous intervention for chronic total occlusion. Catheter. Cardiovasc. Interv. 82, 95–107 (2013).

    Article  PubMed  Google Scholar 

  29. Chung, C. M. et al. Effect of recanalization of chronic total occlusions on global and regional left ventricular function in patients with or without previous myocardial infarction. Catheter. Cardiovasc. Interv. 60, 368–374 (2003).

    Article  PubMed  Google Scholar 

  30. Fiocchi, F. et al. Chronic total coronary occlusion in patients with intermediate viability: value of low-dose dobutamine and contrast-enhanced 3-T MRI in predicting functional recovery in patients undergoing percutaneous revascularisation with drug-eluting stent. Radiol. Med. 114, 692–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Kirschbaum, S. W. et al. Combining magnetic resonance viability variables better predicts improvement of myocardial function prior to percutaneous coronary intervention. Int. J. Cardiol. 159, 192–197 (2012).

    Article  PubMed  Google Scholar 

  32. Roifman, I. et al. The effect of percutaneous coronary intervention of chronically totally occluded coronary arteries on left ventricular global and regional systolic function. Can. J. Cardiol. 29, 1436–1442 (2013).

    Article  PubMed  Google Scholar 

  33. Sun, D. et al. Multimodality imaging evaluation of functional and clinical benefits of percutaneous coronary intervention in patients with chronic total occlusion lesion. Theranostics 2, 788–800 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Valenti, R. et al. Impact of complete revascularization with percutaneous coronary intervention on survival in patients with at least one chronic total occlusion. Eur. Heart J. 29, 2336–2342 (2008).

    Article  PubMed  Google Scholar 

  35. Angioi, M. et al. Is percutaneous transluminal coronary angioplasty in chronic total coronary occlusion justified? Long term results in a series of 201 patients [French]. Arch. Mal. Coeur. Vaiss. 88, 1383–1389 (1995).

    CAS  PubMed  Google Scholar 

  36. Arslan, U., Balcioglu, A. S., Timurkaynak, T. & Cengel, A. The clinical outcomes of percutaneous coronary intervention in chronic total coronary occlusion. Int. Heart J. 47, 811–819 (2006).

    Article  PubMed  Google Scholar 

  37. Aziz, S., Stables, R. H., Grayson, A. D., Perry, R. A. & Ramsdale, D. R. Percutaneous coronary intervention for chronic total occlusions: improved survival for patients with successful revascularization compared to a failed procedure. Catheter. Cardiovasc. Interv. 70, 15–20 (2007).

    Article  PubMed  Google Scholar 

  38. Borgia, F. et al. Improved cardiac survival, freedom from MACE and angina-related quality of life after successful percutaneous recanalization of coronary artery chronic total occlusions. Int. J. Cardiol. 161, 31–38 (2011).

    Article  PubMed  Google Scholar 

  39. Chen, Y. L. et al. Comparison of prognostic outcome between left circumflex artery-related and right coronary artery-related acute inferior wall myocardial infarction undergoing primary percutaneous coronary intervention. Clin. Cardiol. 34, 249–253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Labriolle, A. et al. Comparison of safety, efficacy, and outcome of successful versus unsuccessful percutaneous coronary intervention in “true” chronic total occlusions. Am. J. Cardiol. 102, 1175–1181 (2008).

    Article  PubMed  Google Scholar 

  41. Drozd, J., Wójcik, J., Opalinska, E., Zapolski, T. & Widomska-Czekajska, T. Percutaneous angioplasty of chronically occluded coronary arteries: long-term clinical follow-up. Kardiol. Pol. 64, 667–673 (2006).

    PubMed  Google Scholar 

  42. Finci, L., Meier, B., Favre, J., Righetti, A. & Rutishauser, W. Long-term results of successful and failed angioplasty for chronic total coronary arterial occlusion. Am. J. Cardiol. 66, 660–662 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Hoye, A., van Domburg, R. T., Sonnenschein, K. & Serruys, P. W. Percutaneous coronary intervention for chronic total occlusions: the Thoraxcenter experience 1992–2002. Eur. Heart J. 26, 2630–2636 (2005).

    Article  PubMed  Google Scholar 

  44. Ivanhoe, R. J. et al. Percutaneous transluminal coronary angioplasty of chronic total occlusions. Primary success, restenosis, and long-term clinical follow-up. Circulation 85, 106–115 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Jaguszewski, M. et al. Recanalization of isolated chronic total occlusions in patients with stable angina. Int. J. Cardiol. 167, 1542–1546 (2013).

    Article  PubMed  Google Scholar 

  46. Jolicœur, E. M. et al. Percutaneous coronary interventions and cardiovascular outcomes for patients with chronic total occlusions. Catheter. Cardiovasc. Interv. 79, 603–612 (2012).

    Article  PubMed  Google Scholar 

  47. Jones, D. A. et al. Successful recanalization of chronic total occlusions is associated with improved long-term survival. JACC Cardiovasc. Interv. 5, 380–388 (2012).

    Article  PubMed  Google Scholar 

  48. Lee, S. W. et al. Long-term clinical outcomes of successful versus unsuccessful revascularization with drug-eluting stents for true chronic total occlusion. Catheter. Cardiovasc. Interv. 78, 346–353 (2011).

    PubMed  Google Scholar 

  49. Mehran, R. et al. Long-term outcome of percutaneous coronary intervention for chronic total occlusions. JACC Cardiovasc. Interv. 4, 952–961 (2011).

    Article  PubMed  Google Scholar 

  50. Niccoli, G. et al. Late (3 years) follow-up of successful versus unsuccessful revascularization in chronic total coronary occlusions treated by drug eluting stent. Am. J. Cardiol. 110, 948–953 (2012).

    Article  PubMed  Google Scholar 

  51. Noguchi, T. et al. Percutaneous transluminal coronary angioplasty of chronic total occlusions. Determinants of primary success and long-term clinical outcome. Catheter. Cardiovasc. Interv. 49, 258–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Olivari, Z. et al. Immediate results and one-year clinical outcome after percutaneous coronary interventions in chronic total occlusions: data from a multicenter, prospective, observational study (TOAST-GISE). J. Am. Coll. Cardiol. 41, 1672–1678 (2003).

    Article  PubMed  Google Scholar 

  53. Prasad, A. et al. Trends in outcomes after percutaneous coronary intervention for chronic total occlusions: a 25-year experience from the Mayo Clinic. J. Am. Coll. Cardiol. 49, 1611–1618 (2007).

    Article  PubMed  Google Scholar 

  54. Sathe, S. et al. Initial and long-term results of percutaneous transluminal balloon angioplasty for chronic total occlusions: an analysis of 184 procedures. Aust. N. Z. J. Med. 24, 277–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Suero, J. A. et al. Procedural outcomes and long-term survival among patients undergoing percutaneous coronary intervention of a chronic total occlusion in native coronary arteries: a 20-year experience. J. Am. Coll. Cardiol. 38, 409–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Warren, R. J., Black, A. J., Valentine, P. A., Manolas, E. G. & Hunt, D. Coronary angioplasty for chronic total occlusion reduces the need for subsequent coronary bypass surgery. Am. Heart J. 120, 270–274 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, Z. K. et al. Impact of successful staged revascularization of a chronic total occlusion in the non-infarct-related artery on long-term outcome in patients with acute ST-segment elevation myocardial infarction. Int. J. Cardiol. 165, 76–79 (2013).

    Article  PubMed  Google Scholar 

  58. Yi, X. H. et al. Long-term clinical outcomes of patients undergoing successful or failed percutaneous coronary intervention for chronic total occlusions of coronary arteries [Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi 37, 773–776 (2009).

    PubMed  Google Scholar 

  59. Kirschbaum, S. W. et al. Evaluation of left ventricular function three years after percutaneous recanalization of chronic total coronary occlusions. Am. J. Cardiol. 101, 179–185 (2008).

    Article  PubMed  Google Scholar 

  60. Nii, H. et al. Significance of percutaneous transluminal coronary intervention for chronic total occlusions assessed as non-viable by myocardial scintigraphy [Japanese]. J. Cardiol. 50, 363–370 (2007).

    PubMed  Google Scholar 

  61. Bonow, R. O. et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N. Engl. J. Med. 364, 1617–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hachamovitch, R. et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur. Heart J. 32, 1012–1024 (2011).

    Article  PubMed  Google Scholar 

  63. Piccini, J. P. et al. Single-photon emission computed tomography myocardial perfusion imaging and the risk of sudden cardiac death in patients with coronary disease and left ventricular ejection fraction >35%. J. Am. Coll. Cardiol. 56, 206–214 (2010).

    Article  PubMed  Google Scholar 

  64. Shaw, L. J. et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117, 1283–1291 (2008).

    Article  PubMed  Google Scholar 

  65. Meissner, M. D., Akhtar, M. & Lehmann, M. H. Nonischemic sudden tachyarrhythmic death in atherosclerotic heart disease. Circulation 84, 905–912 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Meier, P. et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation 116, 975–983 (2007).

    Article  PubMed  Google Scholar 

  67. Pohl, T. et al. Frequency distribution of collateral flow and factors influencing collateral channel development. Functional collateral channel measurement in 450 patients with coronary artery disease. J. Am. Coll. Cardiol. 38, 1872–1878 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. van, R. N., Piek, J. J., Schaper, W. & Fulton, W. F. A critical review of clinical arteriogenesis research. J. Am. Coll. Cardiol. 55, 17–25 (2009).

    Article  Google Scholar 

  69. Fulton, W. F. Arterial anastomoses in the coronary circulation. I. Anatomical features in normal and deseased hearts demonstrated by stereoarteriography. Scott. Med. J. 8, 420–434 (1963).

    Article  CAS  PubMed  Google Scholar 

  70. Werner, G. S. et al. Collaterals and the recovery of left ventricular function after recanalization of a chronic total coronary occlusion. Am. Heart J. 149, 129–137 (2005).

    Article  PubMed  Google Scholar 

  71. Di Carli, M. et al. Myocardial viability in asynergic regions subtended by occluded coronary arteries: relation to the status of collateral flow in patients with chronic coronary artery disease. J. Am. Coll. Cardiol. 23, 860–868 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Sachdeva, R., Agrawal, M., Flynn, S. E., Werner, G. S. & Uretsky, B. F. The myocardium supplied by a chronic total occlusion is a persistently ischemic zone. Catheter. Cardiovasc. Interv. 83, 9–16 (2014).

    Article  PubMed  Google Scholar 

  73. Werner, G. S., Surber, R., Ferrari, M., Fritzenwanger, M. & Figulla, H. R. The functional reserve of collaterals supplying long-term chronic total coronary occlusions in patients without prior myocardial infarction. Eur. Heart J. 27, 2406–2412 (2006).

    Article  PubMed  Google Scholar 

  74. Kim, Y. H. et al. Impact of ischemia-guided revascularization with myocardial perfusion imaging for patients with multivessel coronary disease. J. Am. Coll. Cardiol. 60, 181–190 (2012).

    Article  PubMed  Google Scholar 

  75. Tonino, P. A. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360, 213–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Brugaletta, S. et al. Endothelial and smooth muscle cells dysfunction distal to recanalized chronic total coronary occlusions and the relationship with the collateral connection grade. JACC Cardiovasc. Interv. 5, 170–178 (2012).

    Article  PubMed  Google Scholar 

  77. Bonetti, P. O., Lerman, L. O. & Lerman, A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 23, 168–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Schachinger, V., Britten, M. B. & Zeiher, A. M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101, 1899–1906 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Fathala, A. Myocardial perfusion scintigraphy: techniques, interpretation, indications and reporting. Ann. Saudi Med. 31, 625–634 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Safley, D. M. et al. Changes in myocardial ischemic burden following percutaneous coronary intervention of chronic total occlusions. Catheter. Cardiovasc. Interv. 78, 337–343 (2011).

    PubMed  Google Scholar 

  81. Baer, F. M. et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J. Am. Coll. Cardiol. 31, 1040–1048 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Baer, F. M. et al. Head to head comparison of dobutamine-transoesophageal echocardiography and dobutamine-magnetic resonance imaging for the prediction of left ventricular functional recovery in patients with chronic coronary artery disease. Eur. Heart J. 21, 981–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Cornel, J. H. et al. Biphasic response to dobutamine predicts improvement of global left ventricular function after surgical revascularization in patients with stable coronary artery disease: implications of time course of recovery on diagnostic accuracy. J. Am. Coll. Cardiol. 31, 1002–1010 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Trent, R. J. et al. Dobutamine magnetic resonance imaging as a predictor of myocardial functional recovery after revascularisation. Heart 83, 40–46 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wellnhofer, E. et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109, 2172–2174 (2004).

    Article  PubMed  Google Scholar 

  86. Safley, D. M., House, J. A., Marso, S. P., Grantham, J. A. & Rutherford, B. D. Improvement in survival following successful percutaneous coronary intervention of coronary chronic total occlusions: variability by target vessel. JACC Cardiovasc. Interv. 1, 295–302 (2008).

    Article  PubMed  Google Scholar 

  87. Claessen, B. E. et al. Impact of target vessel on long-term survival after percutaneous coronary intervention for chronic total occlusions. Catheter. Cardiovasc. Interv. 82, 76–82 (2013).

    Article  PubMed  Google Scholar 

  88. Airaksinen, K. E. Autonomic mechanisms and sudden death after abrupt coronary occlusion. Ann. Med. 31, 240–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Webb, S. W., Adgey, A. A. & Pantridge, J. F. Autonomic disturbance at onset of acute myocardial infarction. Br. Med. J. 3, 89–92 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. La Rovere, M. T., Bigger, J. T. Jr, Marcus, F. I., Mortara, A. & Schwartz, P. J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351, 478–484 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Schwartz, P. J. & Stone, H. L. Left stellectomy in the prevention of ventricular fibrillation caused by acute myocardial ischemia in conscious dogs with anterior myocardial infarction. Circulation 62, 1256–1265 (1980).

    Article  CAS  PubMed  Google Scholar 

  92. Szwoch, M. et al. Comparison the effects of recanalisation of chronic total occlusion of the right and left coronary arteries on the autonomic nervous system function. Kardiol. Pol. 67, 467–474 (2009).

    PubMed  Google Scholar 

  93. Claessen, B. E. et al. Evaluation of the effect of a concurrent chronic total occlusion on long-term mortality and left ventricular function in patients after primary percutaneous coronary intervention. JACC Cardiovasc. Interv. 2, 1128–1134 (2009).

    Article  PubMed  Google Scholar 

  94. Claessen, B. E. et al. Prognostic impact of a chronic total occlusion in a non-infarct-related artery in patients with ST-segment elevation myocardial infarction: 3-year results from the HORIZONS-AMI trial. Eur. Heart J. 33, 768–775 (2012).

    Article  PubMed  Google Scholar 

  95. Lexis, C. P. et al. Impact of chronic total occlusions on markers of reperfusion, infarct size, and long-term mortality: a substudy from the TAPAS-trial. Catheter. Cardiovasc. Interv. 77, 484–491 (2011).

    Article  PubMed  Google Scholar 

  96. Tajstra, M. et al. Comparison of five-year outcomes of patients with and without chronic total occlusion of noninfarct coronary artery after primary coronary intervention for ST-segment elevation acute myocardial infarction. Am. J. Cardiol. 109, 208–213 (2012).

    Article  PubMed  Google Scholar 

  97. Hoebers, L. P. et al. The impact of multivessel disease with and without a co-existing chronic total occlusion on short- and long-term mortality in ST-elevation myocardial infarction patients with and without cardiogenic shock. Eur. J. Heart Fail. 15, 425–432 (2013).

    Article  PubMed  Google Scholar 

  98. Miller, R. CTO, Even in non-infarct-related artery, bodes ill in NSTEMI patients. [online], (2012).

  99. Gierlotka, M. et al. Impact of chronic total occlusion artery on 12-month mortality in patients with non-ST-segment elevation myocardial infarction treated by percutaneous coronary intervention (from the PL-ACS Registry). Int. J. Cardiol. 168, 250–254 (2013).

    Article  PubMed  Google Scholar 

  100. Hansen, J. F. Coronary collateral circulation: clinical significance and influence on survival in patients with coronary artery occlusion. Am. Heart J. 117, 290–295 (1989).

    Article  CAS  PubMed  Google Scholar 

  101. Migliorini, A. et al. The impact of right coronary artery chronic total occlusion on clinical outcome of patients undergoing percutaneous coronary intervention for unprotected left main disease. J. Am. Coll. Cardiol. 58, 125–130 (2011).

    Article  PubMed  Google Scholar 

  102. Patel, V. G. et al. Angiographic success and procedural complications in patients undergoing percutaneous coronary chronic total occlusion interventions: a weighted meta-analysis of 18,061 patients from 65 studies. JACC Cardiovasc. Interv. 6, 128–136 (2013).

    Article  PubMed  Google Scholar 

  103. Galassi, A. R. et al. In-hospital outcomes of percutaneous coronary intervention in patients with chronic total occlusion: insights from the ERCTO (European Registry of Chronic Total Occlusion) registry. EuroIntervention 7, 472–479 (2011).

    Article  PubMed  Google Scholar 

  104. Suzuki, S. et al. Radiation exposure to patient's skin during percutaneous coronary intervention for various lesions, including chronic total occlusion. Circ. J. 70, 44–48 (2006).

    Article  PubMed  Google Scholar 

  105. Tan, K. H. et al. Determinants of success of coronary angioplasty in patients with a chronic total occlusion: a multiple logistic regression model to improve selection of patients. Br. Heart J. 70, 126–131 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morino, Y. et al. Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes: the J-CTO (Multicenter CTO Registry in Japan) score as a difficulty grading and time assessment tool. JACC Cardiovasc. Interv. 4, 213–221 (2011).

    Article  PubMed  Google Scholar 

  107. Rubartelli, P. et al. Coronary stent implantation is superior to balloon angioplasty for chronic coronary occlusions: six-year clinical follow-up of the GISSOC trial. J. Am. Coll. Cardiol. 41, 1488–1492 (2003).

    Article  PubMed  Google Scholar 

  108. Saeed, B. et al. Use of drug-eluting stents for chronic total occlusions: a systematic review and meta-analysis. Catheter. Cardiovasc. Interv. 77, 315–332 (2011).

    Article  PubMed  Google Scholar 

  109. Sirnes, P. A. et al. Stenting in Chronic Coronary Occlusion (SICCO): a randomized, controlled trial of adding stent implantation after successful angioplasty. J. Am. Coll. Cardiol. 28, 1444–1451 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Levine, G. N. et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J. Am. Coll. Cardiol. 58, e44–e122 (2011).

    Article  PubMed  Google Scholar 

  111. Rahel, B. M. et al. Primary stenting of occluded native coronary arteries: final results of the Primary Stenting of Occluded Native Coronary Arteries (PRISON) study. Am. Heart J. 147, e22 (2004).

    Article  PubMed  Google Scholar 

  112. Moreno, R. et al. Randomized comparison of sirolimus-eluting and everolimus-eluting coronary stents in the treatment of total coronary occlusions: results from the chronic coronary occlusion treated by everolimus-eluting stent randomized trial. Circ. Cardiovasc. Interv. 6, 21–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Park, H. J. et al. Randomized comparison of the efficacy and safety of zotarolimus-eluting stents vs. sirolimus-eluting stents for percutaneous coronary intervention in chronic total occlusion—CAtholic Total Occlusion Study (CATOS) trial. Circ. J. 76, 868–875 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Van den Branden, B. J. et al. Primary Stenting of Totally Occluded Native Coronary Arteries III (PRISON III): a randomised comparison of sirolimus-eluting stent implantation with zotarolimus-eluting stent implantation for the treatment of total coronary occlusions. EuroIntervention 9, 841–853 (2013).

    Article  PubMed  Google Scholar 

  115. Hoye, A. et al. Drug-eluting stent implantation for chronic total occlusions: comparison between the sirolimus- and paclitaxel-eluting stent. EuroIntervention 1, 193–197 (2005).

    PubMed  Google Scholar 

  116. Lee, S. P. et al. Long-term clinical outcome of chronic total occlusive lesions treated with drug-eluting stents: comparison of sirolimus-eluting and paclitaxel-eluting stents. Circ. J. 74, 693–700 (2010).

    Article  PubMed  Google Scholar 

  117. Bourantas, C. V. et al. Bioresorbable scaffolds: current evidence and ongoing clinical trials. Curr. Cardiol. Rep. 14, 626–634 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Valenti, R. et al. Predictors of reocclusion after successful drug-eluting stent-supported percutaneous coronary intervention of chronic total occlusion. J. Am. Coll. Cardiol. 61, 545–550 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Goldman, S. et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 44, 2149–2156 (2004).

    Article  PubMed  Google Scholar 

  120. van der Schaaf, R. J. et al. Rationale and design of EXPLORE: a randomized, prospective, multicenter trial investigating the impact of recanalization of a chronic total occlusion on left ventricular function in patients after primary percutaneous coronary intervention for acute ST-elevation myocardial infarction. Trials 11, 89 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  122. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  123. Rathore, S. et al. Procedural and in-hospital outcomes after percutaneous coronary intervention for chronic total occlusions of coronary arteries 2002 to 2008: impact of novel guidewire techniques. JACC Cardiovasc. Interv. 2, 489–497 (2009).

    Article  PubMed  Google Scholar 

  124. Gurun, G., Hasler, P. & Degertekin, F. Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1658–1668 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Brilakis, E. S. et al. A percutaneous treatment algorithm for crossing coronary chronic total occlusions. JACC Cardiovasc. Interv. 5, 367–379 (2012).

    Article  PubMed  Google Scholar 

  126. Whitlow, P. L. et al. Use of a novel crossing and re-entry system in coronary chronic total occlusions that have failed standard crossing techniques: results of the FAST-CTOs (Facilitated Antegrade Steering Technique in Chronic Total Occlusions) trial. JACC Cardiovasc. Interv. 5, 393–401 (2012).

    Article  PubMed  Google Scholar 

  127. Strauss, B. H. et al. Collagenase Total Occlusion-1 (CTO-1) trial: a phase I, dose-escalation, safety study. Circulation 125, 522–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Eitenmuller, I. et al. The range of adaptation by collateral vessels after femoral artery occlusion. Circ. Res. 99, 656–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Grundmann, S., Piek, J. J., Pasterkamp, G. & Hoefer, I. E. Arteriogenesis: basic mechanisms and therapeutic stimulation. Eur. J. Clin. Invest. 37, 755–766 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Hollander, M., Horrevoets, A. J. & Van Royen, N. Cellular and pharmacological targets to induce coronary arteriogenesis. Curr. Cardiol. Rev. 10, 29–37 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Manchanda, A. & Soran, O. Enhanced external counterpulsation and future directions: step beyond medical management for patients with angina and heart failure. J. Am. Coll. Cardiol. 50, 1523–1531 (2007).

    Article  PubMed  Google Scholar 

  132. Zbinden, R. et al. Coronary collateral flow in response to endurance exercise training. Eur. J. Cardiovasc. Prev. Rehabil. 14, 250–257 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.P.H., B.E.C. and J.P.S.H. researched data for the article and wrote the manuscript. All the authors substantially contributed to discussion of the content, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to José P. S. Henriques.

Ethics declarations

Competing interests

G.D.D and R.M. are advisory Board members for Abbott Vascular and Boston Scientific. J.P.S.H. is principal investigator of the EXPLORE trial and has received a restricted research grant from Abbott Vascular. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoebers, L., Claessen, B., Dangas, G. et al. Contemporary overview and clinical perspectives of chronic total occlusions. Nat Rev Cardiol 11, 458–469 (2014). https://doi.org/10.1038/nrcardio.2014.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing