Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Targeting allosteric disulphide bonds in cancer

Subjects

A Corrigendum to this article was published on 03 June 2013

This article has been updated

Abstract

Protein action in nature is generally controlled by the amount of protein produced and by chemical modification of the protein, and both are often perturbed in cancer. The amino acid side chains and the peptide and disulphide bonds that bind the polypeptide backbone can be post-translationally modified. Post-translational cleavage or the formation of disulphide bonds are now being identified in cancer-related proteins and it is timely to consider how these allosteric bonds could be targeted for new therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three basic types of post- translational modifications.
Figure 2: Mechanisms of cleavage of allosteric disulphide bonds.
Figure 3: Targeting allosteric disulphide bonds with small molecules.

Similar content being viewed by others

Change history

  • 13 May 2013

    This has now been corrected in the HTML and PDF versions of the article.

  • 03 June 2013

    In Table 1 of this article, the β3 integrin row should have read "523–544 and 560–583" in the "Disulphide cysteines" column and "−RHstaple and −LHhook (3IJE)" in the "Disulphide bond configuration (PDB identifiers)" column. This has been corrected online.

References

  1. Walsh, C. T. Posttranslational Modification Of Proteins: Expanding Nature's Inventory (Roberts & Company, 2006).

    Google Scholar 

  2. Cook, K. M. & Hogg, P. J. Posttranslational control of protein function by disulfide bond cleavage. Antioxid. Redox Signal. 18, 1987–2015 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Braakman, I. & Bulleid, N. J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80, 71–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Depuydt, M., Messens, J. & Collet, J. F. How proteins form disulfide bonds. Antioxid. Redox Signal. 15, 49–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Wong, J. W., Ho, S. Y. & Hogg, P. J. Disulfide bond acquisition through eukaryotic protein evolution. Mol. Biol. Evol. 28, 327–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Hogg, P. J. Disulfide bonds as switches for protein function. Trends Biochem. Sci. 28, 210–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt, B., Ho, L. & Hogg, P. J. Allosteric disulfide bonds. Biochemistry 45, 7429–7433 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Azimi, I., Wong, J. W. & Hogg, P. J. Control of mature protein function by allosteric disulfide bonds. Antioxid. Redox Signal. 14, 113–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt, B. & Hogg, P. J. Search for allosteric disulfide bonds in NMR structures. BMC Struct. Biol. 7, 49 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Metcalfe, C., Cresswell, P. & Barclay, A. N. Interleukin-2 signalling is modulated by a labile disulfide bond in the CD132 chain of its receptor. Open Biol. 2, 110036 (2012).

    Google Scholar 

  12. Wang, M. Y. et al. A redox switch in C-reactive protein modulates activation of endothelial cells. FASEB J. 25, 3186–3196 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Jin, X. et al. Activation of extracellular transglutaminase 2 by thioredoxin. J. Biol. Chem. 286, 37866–37873 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lay, A. J. et al. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 408, 869–873 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Kaiser, B. K. et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447, 482–486 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, A. et al. A redox switch in angiotensinogen modulates angiotensin release. Nature 468, 108–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maekawa, A., Schmidt, B., Fazekas de St Groth, B., Sanejouand, Y. H. & Hogg, P. J. Evidence for a domain-swapped CD4 dimer as the coreceptor for binding to class II MHC. J. Immunol. 176, 6873–6878 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Ganderton, T., Wong, J. W., Schroeder, C. & Hogg, P. J. Lateral self-association of VWF involves the Cys2431-Cys2453 disulfide/dithiol in the C2 domain. Blood 118, 5312–5318 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Giannakopoulos, B. & Krilis, S. A. The pathogenesis of the antiphospholipid syndrome. N. Engl. J. Med. 368, 1033–1044 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Ioannou, Y. et al. Naturally occurring free thiols within β2-glycoprotein I in vivo: nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury. Blood 116, 1961–1970 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Ioannou, Y. et al. Novel assays of thrombogenic pathogenicity in the antiphospholipid syndrome based on the detection of molecular oxidative modification of the major autoantigen β2-glycoprotein I. Arthritis Rheum. 63, 2774–2782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Passam, F. H. et al. Redox control of β2-glycoprotein I-von Willebrand factor interaction by thioredoxin-1. J. Thromb. Haemost. 8, 1754–1762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Passam, F. H. et al. β 2 glycoprotein I is a substrate of thiol oxidoreductases. Blood 116, 1995–1997 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Giannakopoulos, B. et al. Factor XI is a substrate for oxidoreductases: enhanced activation of reduced FXI and its role in antiphospholipid syndrome thrombosis. J. Autoimmun. 39, 121–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Crowley, S. D. & Coffman, T. M. Recent advances involving the renin-angiotensin system. Exp. Cell Res. 318, 1049–1056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jarvis, R. M., Hughes, S. M. & Ledgerwood, E. C. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522–1530 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Cao, Z., Tavender, T. J., Roszak, A. W., Cogdell, R. J. & Bulleid, N. J. Crystal structure of reduced and of oxidized peroxiredoxin IV enzyme reveals a stable oxidized decamer and a non-disulfide-bonded intermediate in the catalytic cycle. J. Biol. Chem. 286, 42257–42266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fourquet, S., Guerois, R., Biard, D. & Toledano, M. B. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J. Biol. Chem. 285, 8463–8471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baba, H., Sueyoshi, N., Shigeri, Y., Ishida, A. & Kameshita, I. Regulation of Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) by oxidation/reduction at Cys-359. Arch. Biochem. Biophys. 526, 9–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Burgoyne, J. R. et al. Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317, 1393–1397 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Nadeau, P. J., Charette, S. J. & Landry, J. REDOX reaction at ASK1-Cys250 is essential for activation of JNK and induction of apoptosis. Mol. Biol. Cell 20, 3628–3637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nadeau, P. J., Charette, S. J., Toledano, M. B. & Landry, J. Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H2O2-induced c-Jun NH2-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903–3913 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wouters, M. A., Lau, K. K. & Hogg, P. J. Cross-strand disulphides in cell entry proteins: poised to act. Bioessays 26, 73–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Cerutti, N. et al. Stabilization of HIV-1 gp120-CD4 receptor complex through targeted interchain disulfide exchange. J. Biol. Chem. 285, 25743–25752 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin, G. et al. Stabilization of HIV-1 envelope in the CD4-bound conformation through specific cross-linking of a CD4 mimetic. J. Biol. Chem. 286, 21706–21716 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Algaier, I., Jakubowski, J. A., Asai, F. & von Kugelgen, I. Interaction of the active metabolite of prasugrel, R-138727, with cysteine 97 and cysteine 175 of the human P2Y12 receptor. J. Thromb. Haemost. 6, 1908–1914 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Chmura, A. J., Orton, M. S. & Meares, C. F. Antibodies with infinite affinity. Proc. Natl Acad. Sci. USA 98, 8480–8484 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sadowsky, J. D. et al. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc. Natl Acad. Sci. USA 108, 6056–6061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA 93, 12445–12450 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derivedγ δ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jinushi, M., Hodi, F. S. & Dranoff, G. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc. Natl Acad. Sci. USA 103, 9190–9195 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lohela, M., Bry, M., Tammela, T. & Alitalo, K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr. Opin. Cell Biol. 21, 154–165 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Saharinen, P., Eklund, L., Pulkki, K., Bono, P. & Alitalo, K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med. 17, 347–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunol. 5, 74–80 (2004).

    Article  CAS  Google Scholar 

  45. Baldwin, M. E. et al. Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol. Cell. Biol. 25, 2441–2449 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Achen, M. G. & Stacker, S. A. Molecular control of lymphatic metastasis. Ann. NY Acad. Sci. 1131, 225–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. He, Y. et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 65, 4739–4746 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Toivanen, P. I. et al. Novel vascular endothelial growth factor D variants with increased biological activity. J. Biol. Chem. 284, 16037–16048 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leppanen, V. M. et al. Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Blood 117, 1507–1515 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Leppanen, V. M. et al. Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc. Natl Acad. Sci. USA 107, 2425–2430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davydova, N. et al. Preparation of human vascular endothelial growth factor-D for structural and preclinical therapeutic studies. Protein Expr. Purif. 82, 232–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Kim, L. C., Song, L. & Haura, E. B. Src kinases as therapeutic targets for cancer. Nature Rev. Clin. Oncol. 6, 587–595 (2009).

    Article  CAS  Google Scholar 

  53. Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T. & Nakagawa, H. CSK: a protein-tyrosine kinase involved in regulation of src family kinases. J. Biol. Chem. 266, 24249–24252 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Okada, M. & Nakagawa, H. A protein tyrosine kinase involved in regulation of pp60c-src function. J. Biol. Chem. 264, 20886–20893 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Okada, M. & Nakagawa, H. Protein tyrosine kinase in rat brain: neonatal rat brain expresses two types of pp60c-src and a novel protein tyrosine kinase. J. Biochem. 104, 297–305 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Okada, M. & Nakagawa, H. Identification of a novel protein tyrosine kinase that phosphorylates pp60c-src and regulates its activity in neonatal rat brain. Biochem. Biophys. Res. Commun. 154, 796–802 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Bennett, B. D. et al. Identification and characterization of a novel tyrosine kinase from megakaryocytes. J. Biol. Chem. 269, 1068–1074 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Klages, S. et al. Ctk: a protein-tyrosine kinase related to Csk that defines an enzyme family. Proc. Natl Acad. Sci. USA 91, 2597–2601 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuo, S. S. et al. Identification and characterization of Batk, a predominantly brain-specific non-receptor protein tyrosine kinase related to Csk. J. Neurosci. Res. 38, 705–715 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. McVicar, D. W. et al. Molecular cloning of lsk, a carboxyl-terminal src kinase (csk) related gene, expressed in leukocytes. Oncogene 9, 2037–2044 (1994).

    CAS  PubMed  Google Scholar 

  61. Sakano, S. et al. Molecular cloning of a novel non-receptor tyrosine kinase, HYL (hematopoietic consensus tyrosine-lacking kinase). Oncogene 9, 1155–1161 (1994).

    CAS  PubMed  Google Scholar 

  62. Cole, P. A., Shen, K., Qiao, Y. & Wang, D. Protein tyrosine kinases Src and Csk: a tail's tale. Curr. Opin. Chem. Biol. 7, 580–585 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Ia, K. K. et al. Structural elements and allosteric mechanisms governing regulation and catalysis of CSK-family kinases and their inhibition of Src-family kinases. Growth Factors 28, 329–350 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Ogawa, A. et al. Structure of the carboxyl-terminal Src kinase, Csk. J. Biol. Chem. 277, 14351–14354 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Li, W., Young, S. L., King, N. & Miller, W. T. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J. Biol. Chem. 283, 15491–15501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Segawa, Y. et al. Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proc. Natl Acad. Sci. USA 103, 12021–12026 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mills, J. E. et al. A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity. J. Mol. Biol. 365, 1460–1468 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Kawabuchi, M. et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404, 999–1003 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Ingley, E. Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim. Biophys. Acta 1784, 56–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. van den Berg, Y. W., Osanto, S., Reitsma, P. H. & Versteeg, H. H. The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 119, 924–932 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Ruf, W. Tissue factor and cancer. Thromb. Res. 130, S84–S87 (2012).

    Article  PubMed  Google Scholar 

  72. Gessler, F. et al. Inhibition of tissue factor/protease-activated receptor-2 signaling limits proliferation, migration and invasion of malignant glioma cells. Neuroscience 165, 1312–1322 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Carneiro-Lobo, T. C. et al. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J. Thromb. Haemost. 7, 1855–1864 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ryden, L. et al. Evidence for tissue factor phosphorylation and its correlation with protease-activated receptor expression and the prognosis of primary breast cancer. Int. J. Cancer 126, 2330–2340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schaffner, F. et al. Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development. Blood 116, 6106–6113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ahamed, J. et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc. Natl Acad. Sci. USA 103, 13932–13937 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, V. M. et al. Evidence for activation of tissue factor by an allosteric disulfide bond. Biochemistry 45, 12020–12028 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Versteeg, H. H. et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood 111, 190–199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Metcalfe, C., Cresswell, P., Ciaccia, L., Thomas, B. & Barclay, A. N. Labile disulfide bonds are common at the leucocyte cell surface. Open Biol. 1, 110010 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hotchkiss, K. A., Chesterman, C. N. & Hogg, P. J. Catalysis of disulfide isomerization in thrombospondin 1 by protein disulfide isomerase. Biochemistry 35, 9761–9767 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Casaletto, J. B. & McClatchey, A. I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nature Rev. Cancer 12, 387–400 (2012).

    Article  CAS  Google Scholar 

  82. Bollag, G. et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nature Rev. Drug Discov. 11, 873–886 (2012).

    Article  CAS  Google Scholar 

  83. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schenone, S., Brullo, C., Musumeci, F., Radi, M. & Botta, M. ATP-competitive inhibitors of mTOR: an update. Curr. Med. Chem. 18, 2995–3014 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Barneda-Zahonero, B. & Parra, M. Histone deacetylases and cancer. Mol. Oncol. 6, 579–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lummis, S. C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Crawford, L. J., Walker, B. & Irvine, A. E. Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal. 5, 101–110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Frezza, M., Schmitt, S. & Dou, Q. P. Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr. Top. Med. Chem. 11, 2888–2905 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Romano, S. et al. The emerging role of large immunophilin FK506 binding protein 51 in cancer. Curr. Med. Chem. 18, 5424–5429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wiita, A. P. et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450, 124–127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fersht, A. Enzyme Structure and Mechanism (Freeman, 1985).

    Google Scholar 

  92. Mor-Cohen, R. et al. Unique disulfide bonds in epidermal growth factor (EGF) domains of β3 affect structure and function of αIIbβ3 and αvβ3 integrins in different manner. J. Biol. Chem. 287, 8879–8891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cuneo, M. J. & London, R. E. Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase β binding affinity. Proc. Natl Acad. Sci. USA 107, 6805–6810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Health and Medical Research Council of Australia and the Cancer Council New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Hogg.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogg, P. Targeting allosteric disulphide bonds in cancer. Nat Rev Cancer 13, 425–431 (2013). https://doi.org/10.1038/nrc3519

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3519

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing