Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The anaemia of cancer: death by a thousand cuts

Key Points

  • Anaemia is the most common cancer-associated morbidity.

  • Cancer-associated anaemia is an adverse prognostic factor for survival independent of tumour type.

  • The mechanisms for cancer-associated anaemia are diverse, but the most important is suppression of production of the essential erythroid-cell growth factor erythropoietin.

  • Erythropoietin serves as a survival factor for late-stage erythroid cells by coordinating the expression of both anti-apoptotic and pro-apoptotic proteins in these cells during their differentiation.

  • Tumour cells also have erythropoietin receptors.

  • Anaemia causes tissue hypoxia, which is tumour promoting through activation of genes in addition to erythropoietin that facilitate angiogenesis, glucose metabolism and cell proliferation, as well as selecting for p53-defective cells. Tissue hypoxia also enhances the resistance of tumour cells to radiotherapy or antimetabolites.

  • Recombinant human erythropoietin can alleviate cancer-associated anaemia and tissue hypoxia, but two recent clinical trials indicated that recombinant erythropoietin might also act as a tumour promoter, whereas the use of tumour-necrosis factor-α (TNFα) and TNF-related apoptosis-inducing ligand as antitumour agents could favour the activity of pro-apoptotic proteins during differentiation of erythoid cells.

Abstract

Cancer has a negative systemic impact on its host in addition to its local or metastatic effects, and no cancer complication is more ubiquitous than anaemia, a condition for which there is now a specific remedy, the recombinant growth factor erythropoietin. This is not a trivial therapeutic consideration, because cancer-associated anaemia has an adverse influence on survival regardless of tumour type. However, the pharmacological correction of anaemia with recombinant erythropoietin could promote tumour growth, whereas the use of tumour-necrosis factor-α (TNFα) and TNF-related apoptosis-inducing ligand as antitumour agents could exacerbate anaemia, thereby perpetuating tissue hypoxia and tumour progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The erythroid differentiation pathway.
Figure 2: The feedback relationship between hypoxaemia and erythropoietin production.
Figure 3: Signal transduction mediated by erythropoietin and stem-cell factor in erythroid progenitor cells.
Figure 4: Causes of cancer-associated anaemia.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2004. CA Cancer J. Clin. 54, 8–29 (2004).

    PubMed  Google Scholar 

  2. Berlin, N. I. Anemia of cancer. Ann. N. Y. Acad. Sci. 230, 209–211 (1974).

    CAS  PubMed  Google Scholar 

  3. Tas, F. et al. Anemia in oncology practice: relation to diseases and their therapies. Am. J. Clin. Oncol. 25, 371–379 (2002).

    PubMed  Google Scholar 

  4. Knight, K., Wade, S. & Balducci, L. Prevalence and outcomes of anemia in cancer: a systematic review of the literature. Am. J Med. 116 (Suppl. 7A), 11–26 (2004).

    Google Scholar 

  5. Groopman, J. E. & Itri, L. M. Chemotherapy-induced anemia in adults: incidence and treatment. J. Natl. Cancer Inst. 91, 1616–1634 (1999).

    CAS  PubMed  Google Scholar 

  6. Caro, J. J., Salas, M., Ward, A. & Goss, G. Anemia as an independent prognostic factor for survival in patients with cancer: a systemic, quantitative review. Cancer 91, 2214–2221 (2001).

    CAS  PubMed  Google Scholar 

  7. Nissenson, A. R., Goodnough, L. T. & Dubois, R. W. Anemia: not just an innocent bystander? Arch. Intern. Med. 163, 1400–1404 (2003).

    PubMed  Google Scholar 

  8. Volberding, P. A. et al. Anemia in HIV infection: clinical impact and evidence-based management strategies. Clin. Infect. Dis. 38, 1454–1463 (2004).

    PubMed  Google Scholar 

  9. Glaser, C. M. et al. Impact of hemoglobin level and use of recombinant erythropoietin on efficacy of preoperative chemoradiation therapy for squamous cell carcinoma of the oral cavity and oropharynx. Int. J. Radiat. Oncol. Biol. Phys. 50, 705–715 (2001).

    CAS  PubMed  Google Scholar 

  10. Stasi, R., Abriani, L., Beccaglia, P., Terzoli, E. & Amadori, S. Cancer-related fatigue: evolving concepts in evaluation and treatment. Cancer 98, 1786–1801 (2003).

    PubMed  Google Scholar 

  11. Cella, D., Kallich, J., McDermott, A. & Xu, X. The longitudinal relationship of hemoglobin, fatigue and quality of life in anemic cancer patients: results from five randomized clinical trials. Ann. Oncol. 15, 979–986 (2004).

    CAS  PubMed  Google Scholar 

  12. Leyland-Jones, B. Breast cancer trial with erythropoietin terminated unexpectedly. Lancet Oncol. 4, 459–460 (2003). An unanticipated increase in early deaths led to termination of this trial, but analysis of causality was confounded by an imbalance in risk factors between the treatment arms as well with other protocol deficiencies.

    PubMed  Google Scholar 

  13. Henke, M. et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet 362, 1255–1260 (2003). Anaemia correction was achieved at the expense of inferior survival, but an imbalance in risk factors, poor overall survival and inappropriate starting and target haemoglobin levels prevent definitive conclusions.

    CAS  PubMed  Google Scholar 

  14. Conrad, M. E. & Crosby. The natural history of iron deficiency induced by phlebotomy. Blood 20, 173–185 (1962).

    CAS  PubMed  Google Scholar 

  15. Moliterno, A. R. & Spivak, J. L. in Scientific Basis of Transfusion Medicine. (eds Anderson, K. C. & Ness, P. M.) 1–12 (W. B. Saunders, Philadelphia, 2000).

    Google Scholar 

  16. Roberts, R. et al. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332, 376–378 (1988).

    CAS  PubMed  Google Scholar 

  17. Reissmann, K. R. Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia. Blood 5, 372–380 (1950).

    CAS  PubMed  Google Scholar 

  18. Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230–1237 (1995).

    CAS  PubMed  Google Scholar 

  19. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    CAS  Google Scholar 

  20. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    CAS  Google Scholar 

  21. Bondurant, M. C. & Koury, M. J. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol. Cell. Biol. 6, 2731–2733 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Koury, S. T., Koury, M. J., Bondurant, M. C., Caro, J. & Graber, S. E. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74, 645–651 (1989).

    CAS  PubMed  Google Scholar 

  23. Koury, S. T., Bondurant, M. C., Koury, M. J. & Semenza, G. L. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77, 2497–2503 (1991).

    CAS  PubMed  Google Scholar 

  24. Tan, C. C., Eckardt, K. U., Firth, J. D. & Ratcliffe, P. J. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am. J. Physiol. 263, F474–F481 (1992).

    CAS  PubMed  Google Scholar 

  25. Jewell, U. R. et al. Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J. 15, 1312–1314 (2001).

    CAS  PubMed  Google Scholar 

  26. Spivak, J. L. The clinical physiology of erythropoietin. Semin. Hematol. 30, 2–11 (1993).

    CAS  PubMed  Google Scholar 

  27. Sawyer, S. T., Krantz, S. B. & Goldwasser, E. Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells. J. Biol. Chem. 262, 5554–5562 (1987).

    CAS  PubMed  Google Scholar 

  28. Chapel, S. H., Veng-Pedersen, P., Schmidt, R. L. & Widness, J. A. Receptor-based model accounts for phlebotomy-induced changes in erythropoietin pharmacokinetics. Exp. Hematol. 29, 425–431 (2001).

    CAS  PubMed  Google Scholar 

  29. Singh, A. et al. Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J. Clin. Invest. 91, 251–256 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spivak, J. L. The blood in systemic disorders. Lancet 355, 1707–1712 (2000).

    CAS  PubMed  Google Scholar 

  31. Maccio, A. et al. Hemoglobin levels correlate with interleukin-6 levels in patients with advanced untreated epithelial ovarian cancer: role of inflammation in cancer-related anemia. Blood (in the press).

  32. Means, R. T. Jr & Krantz, S. B. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 80, 1639–1647 (1992).

    PubMed  Google Scholar 

  33. Faquin, W. C., Schneider, T. J. & Goldberg, M. A. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood 79, 1987–1994 (1992).

    CAS  PubMed  Google Scholar 

  34. Vannucchi, A. M. et al. Inhibition of erythropoietin production in vitro by human interferon γ. Br. J. Haematol. 87, 18–23 (1994).

    CAS  PubMed  Google Scholar 

  35. Frede, S., Fandrey, J., Pagel, H., Hellwig, T. & Jelkmann, W. Erythropoietin gene expression is suppressed after lipopolysaccharide or interleukin-1β injections in rats. Am. J. Physiol. 273, R1067–R1071 (1997).

    CAS  PubMed  Google Scholar 

  36. Hellwig-Burgel, T., Rutkowski, K., Metzen, E., Fandrey, J. & Jelkmann, W. Interleukin-1β and tumour necrosis factor-α stimulate DNA binding of hypoxia-inducible factor-1. Blood 94, 1561–1567 (1999).

    CAS  PubMed  Google Scholar 

  37. La Ferla, K., Reimann, C., Jelkmann, W. & Hellwig-Burgel, T. Inhibition of erythropoietin gene expression signalling involves the transcription factors GATA-2 and NF-κB. FASEB J. 16, 1811–1813 (2002).

    CAS  PubMed  Google Scholar 

  38. Pisa, P., Stenke, L., Bernell, P., Hansson, M. & Hast, R. Tumour necrosis factor-α and interferon-γ in serum of multiple myeloma patients. Anticancer Res. 10, 817–820 (1990).

    CAS  PubMed  Google Scholar 

  39. Xia, Y., Feng, L., Yoshimura, T. & Wilson, C. B. LPS-induced MCP-1, IL-1β, and TNF-α mRNA expression in isolated erythrocyte-perfused rat kidney. Am. J. Physiol. 264, F774–F780 (1993).

    CAS  PubMed  Google Scholar 

  40. Herrmann, F., Gebauer, G., Lindemann, A., Brach, M. & Mertelsmann, R. Interleukin-2 and interferon-γ recruit different subsets of human peripheral blood monocytes to secrete interleukin-1β and tumour necrosis factor-α. Clin. Exp. Immunol. 77, 97–100 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Means, R. T. Jr & Krantz, S. B. Inhibition of human erythroid colony-forming units by tumour necrosis factor requires β interferon. J. Clin. Invest. 91, 416–419 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Aulitzky, W. E. et al. Enhanced serum levels of β-2-microglobulin, neopterin, and interferon-γ in patients treated with recombinant tumour necrosis factor-α. J. Interferon Res. 8, 655–664 (1988).

    CAS  PubMed  Google Scholar 

  43. Panzer, S., Madden, M. & Matsuki, K. Interaction of IL-1β, IL-6 and tumour necrosis factor-α (TNF-α) in human T cells activated by murine antigens. Clin. Exp. Immunol. 93, 471–478 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Furmanski, P. & Johnson, C. S. Macrophage control of normal and leukemic erythropoiesis: identification of the macrophage-derived erythroid suppressing activity as interleukin-1 and the mediator of its in vivo action as tumour necrosis factor. Blood 75, 2328–2334 (1990).

    CAS  PubMed  Google Scholar 

  45. Johnson, C. S., Pourbohloul, S. C. & Furmanski, P. Negative regulators of in vivo erythropoiesis: interaction of IL-1 α and TNF-α and the lack of a strict requirement for T or NK cells for their activity. Exp. Hematol. 19, 101–105 (1991).

    CAS  PubMed  Google Scholar 

  46. Nicolas, G. et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Invest. 110, 1037–1044 (2002). Anaemia and hypoxia downregulate hepcidin expression and increase iron availability, whereas inflammation upregulates hepcidin expression and reduces iron availability.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kling, P. J. et al. Iron deprivation increases erythropoietin production in vitro, in normal subjects and patients with malignancy. Br. J. Haematol. 95, 241–248 (1996).

    CAS  PubMed  Google Scholar 

  48. Miller, C. B., Jones, R. J., Piantadosi, S., Abeloff, M. D. & Spivak, J. L. Decreased erythropoietin response in patients with the anemia of cancer. N. Engl. J. Med. 322, 1689–1692 (1990). Cancer blunts the feedback relationship between tissue hypoxia and renal erythropoietin.

    CAS  PubMed  Google Scholar 

  49. Rizzo, J. D. et al. Use of epoetin in patients with cancer: evidence-based clinical practice guidelines of the American Society of Clinical Oncology and the American Society of Hematology. Blood 100, 2303–2320 (2002). Meta-analysis of the clinical use of recombinant erythropoietin in the treatment of cancer-associated anaemia.

    CAS  PubMed  Google Scholar 

  50. Quirt, I. et al. Epoetin alfa therapy increases hemoglobin levels and improves quality of life in patients with cancer-related anemia who are not receiving chemotherapy and patients with anemia who are receiving chemotherapy. J. Clin. Oncol. 19, 4126–4134 (2001).

    CAS  PubMed  Google Scholar 

  51. Dainiak, N. et al. Mechanisms of abnormal erythropoiesis in malignancy. Cancer 51, 1101–1106 (1983).

    CAS  PubMed  Google Scholar 

  52. Bazan, J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl Acad. Sci. USA 87, 6934–6938 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Remy, I., Wilson, I. A. & Michnick, S. W. Erythropoietin receptor activation by a ligand-induced conformation change. Science 283, 990–993 (1999).

    CAS  PubMed  Google Scholar 

  54. Koury, M. J. & Bondurant, M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248, 378–381 (1990). Erythropoietin is a survival factor for late erythroid progenitor cells.

    CAS  PubMed  Google Scholar 

  55. Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).

    CAS  PubMed  Google Scholar 

  56. Smith, M. A., Court, E. L. & Smith, J. G. Stem cell factor: laboratory and clinical aspects. Blood Rev. 15, 191–197 (2001).

    CAS  PubMed  Google Scholar 

  57. Dai, C. H., Price, J. O., Brunner, T. & Krantz, S. B. Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon γ to produce erythroid cell apoptosis. Blood 91, 1235–1242 (1998).

    CAS  PubMed  Google Scholar 

  58. Choi, I. et al. Interferon γ delays apoptosis of mature erythroid progenitor cells in the absence of erythropoietin. Blood 95, 3742–3749 (2000).

    CAS  PubMed  Google Scholar 

  59. Dai, C. & Krantz, S. B. Interferon gamma induces upregulation and activation of caspases 1, 3, and 8 to produce apoptosis in human erythroid progenitor cells. Blood 93, 3309–3316 (1999).

    CAS  PubMed  Google Scholar 

  60. Zamai, L. et al. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood 95, 3716–3724 (2000).

    CAS  PubMed  Google Scholar 

  61. Secchiero, P. et al. TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood 103, 517–522 (2004).

    CAS  PubMed  Google Scholar 

  62. Schmidt, U. et al. Btk Is Required for an efficient response to erythropoietin and for SCF-controlled protection against TRAIL in erythroid progenitors. J. Exp. Med. 199, 785–795 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Blick, M., Sherwin, S. A., Rosenblum, M. & Gutterman, J. Phase I study of recombinant tumour necrosis factor in cancer patients. Cancer Res. 47, 2986–2989 (1987).

    CAS  PubMed  Google Scholar 

  64. Rusten, L. S. & Jacobsen, S. E. Tumour necrosis factor (TNF)-α directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood 85, 989–996 (1995).

    CAS  PubMed  Google Scholar 

  65. Moldawer, L. L. et al. Cachectin/tumour necrosis factor-α alters red blood cell kinetics and induces anemia in vivo. FASEB J. 3, 1637–1643 (1989).

    CAS  PubMed  Google Scholar 

  66. Uddin, S., Ah-Kang, J., Ulaszek, J., Mahmud, D. & Wickrema, A. Differentiation stage-specific activation of p38 mitogen-activated protein kinase isoforms in primary human erythroid cells. Proc. Natl Acad. Sci. USA 101, 147–152 (2004).

    CAS  PubMed  Google Scholar 

  67. Zermati, Y. et al. Caspase activation is required for terminal erythroid differentiation. J. Exp. Med. 193, 247–254 (2001). Controlled activation of a death effector protease is essential for completion of erythroid differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gupta, S. Molecular signalling in death receptor and mitochondrial pathways of apoptosis (review). Int. J. Oncol. 22, 15–20 (2003).

    CAS  PubMed  Google Scholar 

  69. Kapur, R. & Zhang, L. A novel mechanism of cooperation between c-Kit and erythropoietin receptor. Stem cell factor induces the expression of Stat5 and erythropoietin receptor, resulting in efficient proliferation and survival by erythropoietin. J. Biol. Chem. 276, 1099–1106 (2001). Synergistic interaction of two growth factor receptors essential for erythropoiesis.

    CAS  PubMed  Google Scholar 

  70. Budd, R. C. Death receptors couple to both cell proliferation and apoptosis. J. Clin. Invest 109, 437–441 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Koury, M. J. & Bondurant, M. C. The molecular mechanism of erythropoietin action. Eur. J. Biochem. 210, 649–663 (1992).

    CAS  PubMed  Google Scholar 

  72. De Maria, R. et al. Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood 93, 796–803 (1999). Differential regulation of FAS and its ligand during erythroid differentiation.

    CAS  PubMed  Google Scholar 

  73. Crosby, W. H. & Akeroyd, J. H. The limit of hemoglobin synthesis in hereditary hemolytic anemia; its relation to the excretion of bile pigment. Am. J. Med. 13, 273–283 (1952).

    CAS  PubMed  Google Scholar 

  74. Hyman, G. A. Anemia in malignant neoplastic disease. J. Chronic. Dis. 16, 645–666 (1963).

    CAS  PubMed  Google Scholar 

  75. Moliterno, A. R. & Spivak, J. L. Anemia of cancer. Hematol. Oncol. Clin. North Am. 10, 345–363 (1996).

    CAS  PubMed  Google Scholar 

  76. Reiner, A. P. & Spivak, J. L. Hematophagic histiocytosis. A report of 23 new patients and a review of the literature. Medicine (Baltimore) 67, 369–388 (1988).

    CAS  Google Scholar 

  77. Cartwright, G. E. The anemia of chronic disorders. Semin. Hematol. 3, 351–375 (1966).

    CAS  PubMed  Google Scholar 

  78. Cash, J. M. & Sears, D. A. The anemia of chronic disease: spectrum of associated diseases in a series of unselected hospitalized patients. Am. J. Med. 87, 638–644 (1989). The anaemia of chronic disease encompasses a wider range of disorders than initially recognized.

    CAS  PubMed  Google Scholar 

  79. Denz, H. et al. Correlation between neopterin, interferon-γ and haemoglobin in patients with haematological disorders. Eur. J. Haematol. 44, 186–189 (1990).

    CAS  PubMed  Google Scholar 

  80. Balkwill, F. et al. Evidence for tumour necrosis factor/cachectin production in cancer. Lancet 2, 1229–1232 (1987).

    CAS  PubMed  Google Scholar 

  81. Jason, J. et al. Comparison of serum and cell-specific cytokines in humans. Clin. Diagn. Lab. Immunol. 8, 1097–1103 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Roodman, G. D., Horadam, V. W. & Wright, T. L. Inhibition of erythroid colony formation by autologous bone marrow adherent cells from patients with the anemia of chronic disease. Blood 62, 406–412 (1983).

    CAS  PubMed  Google Scholar 

  83. Claessens, Y. E. et al. In vitro proliferation and differentiation of erythroid progenitors from patients with myelodysplastic syndromes: evidence for Fas-dependent apoptosis. Blood 99, 1594–1601 (2002).

    CAS  PubMed  Google Scholar 

  84. Kitagawa, M. et al. Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia. Leukemia 12, 486–492 (1998).

    CAS  PubMed  Google Scholar 

  85. Campioni, D. et al. Evidence for a role of TNF-related apoptosis-inducing ligand (TRAIL) in the anemia of myelodysplastic syndromes. Am. J. Pathol 166, 557–563 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Johnson, R. A., Waddelow, T. A., Caro, J., Oliff, A. & Roodman, G. D. Chronic exposure to tumour necrosis factor in vivo preferentially inhibits erythropoiesis in nude mice. Blood 74, 130–138 (1989).

    CAS  PubMed  Google Scholar 

  87. Xiao, W. et al. Tumour necrosis factor-α inhibits generation of glycophorin A+ cells by CD34+ cells. Exp. Hematol. 30, 1238–1247 (2002).

    CAS  PubMed  Google Scholar 

  88. Means, R. T. Jr, Dessypris, E. N. & Krantz, S. B. Inhibition of human erythroid colony-forming units by interleukin-1 is mediated by γ interferon. J. Cell Physiol. 150, 59–64 (1992).

    CAS  PubMed  Google Scholar 

  89. Durig, J. et al. Expression of macrophage inflammatory protein-1 receptors in human CD34+ hematopoietic cells and their modulation by tumour necrosis factor-α and interferon-γ. Blood 92, 3073–3081 (1998).

    CAS  PubMed  Google Scholar 

  90. Gibellini, D. et al. Stroma-derived factor 1α induces a selective inhibition of human erythroid development via the functional upregulation of Fas/CD95 ligand. Br. J. Haematol. 111, 432–440 (2000).

    CAS  PubMed  Google Scholar 

  91. Herbeuval, J. P. et al. Macrophages from cancer patients: analysis of TRAIL, TRAIL receptors, and colon tumour cell apoptosis. J. Natl. Cancer Inst. 95, 611–621 (2003).

    CAS  PubMed  Google Scholar 

  92. Silvestris, F., Cafforio, P., Tucci, M. & Dammacco, F. Negative regulation of erythroblast maturation by Fas-L+/TRAIL+ highly malignant plasma cells: a major pathogenetic mechanism of anemia in multiple myeloma. Blood 99, 1305–1313 (2002).

    CAS  PubMed  Google Scholar 

  93. Silvestris, F., Tucci, M., Cafforio, P. & Dammacco, F. Fas-L upregulation by highly malignant myeloma plasma cells: role in the pathogenesis of anemia and disease progression. Blood 97, 1155–1164 (2001).

    CAS  PubMed  Google Scholar 

  94. Busch, M. P., Kleinman, S. H. & Nemo, G. J. Current and emerging infectious risks of blood transfusions. JAMA 289, 959–962 (2003).

    PubMed  Google Scholar 

  95. Pealer, L. N. et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N. Engl. J. Med. 349, 1236–1245 (2003).

    CAS  PubMed  Google Scholar 

  96. Barlett, D. L. & Steele, J. B. Why we pay so much for drugs. Time 163, 45–52 (2004).

    Google Scholar 

  97. Eschbach, J. W. et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann. Intern. Med. 111, 992–1000 (1989).

    CAS  PubMed  Google Scholar 

  98. Vaziri, N. D. Cardiovascular effects of erythropoietin and anemia correction. Curr. Opin. Nephrol. Hypertens. 10, 633–637 (2001).

    CAS  PubMed  Google Scholar 

  99. Rossert, J., Casadevall, N. & Eckardt, K. U. Anti-erythropoietin antibodies and pure red cell aplasia. J. Am. Soc. Nephrol. 15, 398–406 (2004).

    PubMed  Google Scholar 

  100. Chikuma, M., Masuda, S., Kobayashi, T., Nagao, M. & Sasaki, R. Tissue-specific regulation of erythropoietin production in the murine kidney, brain, and uterus. Am. J. Physiol. Endocrinol. Metab. 279, E1242–E1248 (2000).

    CAS  PubMed  Google Scholar 

  101. Graeber, T. G. et al. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14, 6264–6277 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ravi, R. et al. Regulation of tumour angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev. 14, 34–44 (2000). Loss of p53 function enhances HIF1α expression and activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Erbayraktar, S., Yilmaz, O., Gokmen, N. & Brines, M. Erythropoietin is a multifunctional tissue-protective cytokine. Curr. Hematol. Rep. 2, 465–470 (2003).

    PubMed  Google Scholar 

  104. Ehrenreich, H. et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol. Med. 8, 495–505 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Vaupel, P., Kelleher, D. K. & Hockel, M. Oxygen status of malignant tumours: pathogenesis of hypoxia and significance for tumour therapy. Semin. Oncol. 28, 29–35 (2001).

    CAS  PubMed  Google Scholar 

  106. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumours in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182 (1997). Hypoxia can be present in well-perfused tumours.

    CAS  PubMed  Google Scholar 

  107. Mizukami, Y. et al. Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res. 64, 1765–1772 (2004).

    CAS  PubMed  Google Scholar 

  108. Hopfl, G. et al. Rescue of hypoxia-inducible factor-1α-deficient tumour growth by wild-type cells is independent of vascular endothelial growth factor. Cancer Res. 62, 2962–2970 (2002).

    CAS  PubMed  Google Scholar 

  109. Zhong, H. et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 59, 5830–5835 (1999).

    CAS  PubMed  Google Scholar 

  110. Birner, P. et al. Overexpression of hypoxia-inducible factor 1α is a marker for an unfavourable prognosis in early-stage invasive cervical cancer. Cancer Res. 60, 4693–4696 (2000).

    CAS  PubMed  Google Scholar 

  111. Ryan, H. E. et al. Hypoxia-inducible factor-1α is a positive factor in solid tumour growth. Cancer Res. 60, 4010–4015 (2000).

    CAS  PubMed  Google Scholar 

  112. Koukourakis, M. I. et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 53, 1192–1202 (2002).

    CAS  PubMed  Google Scholar 

  113. Aebersold, D. M. et al. Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 61, 2911–2916 (2001). Overexpression of HIF1α is an adverse prognostic marker in certain tumour types.

    CAS  PubMed  Google Scholar 

  114. Giatromanolaki, A. et al. Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br. J. Cancer 85, 881–890 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Acs, G. et al. Hypoxia-inducible erythropoietin signalling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumour progression. Am. J. Pathol. 162, 1789–1806 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Acs, G., Zhang, P. J., Rebbeck, T. R., Acs, P. & Verma, A. Immunohistochemical expression of erythropoietin and erythropoietin receptor in breast carcinoma. Cancer 95, 969–981 (2002).

    CAS  PubMed  Google Scholar 

  117. Westenfelder, C. & Baranowski, R. L. Erythropoietin stimulates proliferation of human renal carcinoma cells. Kidney Int. 58, 647–657 (2000).

    CAS  PubMed  Google Scholar 

  118. Yasuda, Y. et al. Erythropoietin is involved in growth and angiogenesis in malignant tumours of female reproductive organs. Carcinogenesis 23, 1797–1805 (2002).

    CAS  PubMed  Google Scholar 

  119. Yasuda, Y. et al. Inhibition of erythropoietin signalling destroys xenografts of ovarian and uterine cancers in nude mice. Br. J. Cancer 84, 836–843 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hockel, M. et al. Association between tumour hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56, 4509–4515 (1996).

    CAS  PubMed  Google Scholar 

  121. Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996). Hypoxia selects for p53-deficient tumour cells.

    CAS  PubMed  Google Scholar 

  122. Becker, A. et al. Severe anemia is associated with poor tumour oxygenation in head and neck squamous cell carcinomas. Int. J. Radiat. Oncol. Biol. Phys. 46, 459–466 (2000).

    CAS  PubMed  Google Scholar 

  123. Obermair, A. et al. Impact of hemoglobin levels before and during concurrent chemoradiotherapy on the response of treatment in patients with cervical carcinoma: preliminary results. Cancer 92, 903–908 (2001).

    CAS  PubMed  Google Scholar 

  124. Lutterbach, J. & Guttenberger, R. Anemia is associated with decreased local control of surgically treated squamous cell carcinomas of the glottic larynx. Int. J. Radiat. Oncol. Biol. Phys. 48, 1345–1350 (2000).

    CAS  PubMed  Google Scholar 

  125. Henke, M., Sindlinger, F., Ikenberg, H., Gerds, T. & Schumacher, M. Blood hemoglobin level and treatment outcome of early breast cancer. Strahlenther. Onkol. 180, 45–51 (2004).

    PubMed  Google Scholar 

  126. Altun, M. et al. Prognostic significance of hemoglobin concentration in nasopharyngeal carcinoma: does treatment-induced anemia have negative effect? In Vivo 17, 483–487 (2003).

    CAS  PubMed  Google Scholar 

  127. Schafer, U., Micke, O., Muller, S. B., Schuller, P. & Willich, N. Hemoglobin as an independent prognostic factor in the radiotherapy of head and neck tumours. Strahlenther. Onkol. 179, 527–534 (2003).

    PubMed  Google Scholar 

  128. Obermair, A. et al. Anemia before and during concurrent chemoradiotherapy in patients with cervical carcinoma: effect on progression-free survival. Int. J. Gynecol. Cancer 13, 633–639 (2003).

    CAS  PubMed  Google Scholar 

  129. Grogan, M. et al. The importance of hemoglobin levels during radiotherapy for carcinoma of the cervix. Cancer 86, 1528–1536 (1999).

    CAS  PubMed  Google Scholar 

  130. Chua, D. T., Sham, J. S. & Choy, D. T. Prognostic impact of hemoglobin levels on treatment outcome in patients with nasopharyngeal carcinoma treated with sequential chemoradiotherapy or radiotherapy alone. Cancer 101, 307–316 (2004).

    PubMed  Google Scholar 

  131. Wagner, W. et al. Prognostic value of hemoglobin concentrations in patients with advanced head and neck cancer treated with combined radio-chemotherapy and surgery. Strahlenther. Onkol. 176, 73–80 (2000).

    CAS  PubMed  Google Scholar 

  132. Kelleher, D. K., Mattheinsen, U., Thews, O. & Vaupel, P. Blood flow, oxygenation, and bioenergetic status of tumours after erythropoietin treatment in normal and anemic rats. Cancer Res. 56, 4728–4734 (1996).

    CAS  PubMed  Google Scholar 

  133. Blackwell, K. L. et al. Human recombinant erythropoietin significantly improves tumour oxygenation independent of its effects on hemoglobin. Cancer Res. 63, 6162–6165 (2003).

    CAS  PubMed  Google Scholar 

  134. Thews, O., Kelleher, D. K. & Vaupel, P. Erythropoietin restores the anemia-induced reduction in cyclophosphamide cytotoxicity in rat tumours. Cancer Res. 61, 1358–1361 (2001).

    CAS  PubMed  Google Scholar 

  135. Silver, D. F. & Piver, M. S. Effects of recombinant human erythropoietin on the antitumour effect of cisplatin in SCID mice bearing human ovarian cancer: a possible oxygen effect. Gynecol. Oncol. 73, 280–284 (1999).

    CAS  PubMed  Google Scholar 

  136. Stuben, G. et al. Recombinant human erythropoietin increases the radiosensitivity of xenografted human tumours in anaemic nude mice. J. Cancer Res. Clin. Oncol. 127, 346–350 (2001).

    CAS  PubMed  Google Scholar 

  137. Van Halteren, H. K. et al. Recombinant human erythropoietin attenuates weight loss in a murine cancer cachexia model. J. Cancer Res. Clin. Oncol. 130, 211–216 (2004).

    CAS  PubMed  Google Scholar 

  138. Mittelman, M., Neumann, D., Peled, A., Kanter, P. & Haran-Ghera, N. Erythropoietin induces tumour regression and antitumour immune responses in murine myeloma models. Proc. Natl Acad. Sci. USA 98, 5181–5186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Littlewood, T. J., Bajetta, E., Nortier, J. W., Vercammen, E. & Rapoport, B. Effects of epoetin alfa on hematologic parameters and quality of life in cancer patients receiving nonplatinum chemotherapy: results of a randomized, double-blind, placebo-controlled trial. J. Clin. Oncol. 19, 2865–2874 (2001). Influential controlled clinical trial of recombinant erythropoietin in anaemic cancer patients.

    CAS  PubMed  Google Scholar 

  140. Kaanders, J. H. & van der Kogel, A. J. Erythropoietin to treat anaemia in patients with head and neck cancer. Lancet 363, 78–79 (2004).

    PubMed  Google Scholar 

  141. Haddad, R. & Posner, M. Erythropoietin to treat anaemia in patients with head and neck cancer. Lancet 363, 79–80 (2004).

    PubMed  Google Scholar 

  142. Leyland-Jones, B. & Mahmud, S. Erythropoietin to treat anaemia in patients with head and neck cancer. Lancet 363, 80–82 (2004).

    PubMed  Google Scholar 

  143. Vaupel, P. & Mayer, A. Erythropoietin to treat anaemia in patients with head and neck cancer. Lancet 363, 992 (2004).

    PubMed  Google Scholar 

  144. Liu, W. M. et al. Effect of haemopoietic growth factors on cancer cell lines and their role in chemosensitivity. Oncogene 23, 981–990 (2004).

    CAS  PubMed  Google Scholar 

  145. Asano, Y., Okamura, S., Shibuya, T., Harada, M. & Niho, Y. Growth of clonogenic myeloblastic leukemic cells in the presence of human recombinant erythropoietin in addition to various human recombinant hematopoietic growth factors. Blood 72, 1682–1686 (1988).

    CAS  PubMed  Google Scholar 

  146. Ribatti, D. et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93, 2627–2636 (1999).

    CAS  PubMed  Google Scholar 

  147. Gordeuk, V. R. et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumours. Blood 103, 3924–3932 (2004).

    CAS  PubMed  Google Scholar 

  148. Ludwig, H. et al. Erythropoietin treatment of anemia associated with multiple myeloma. N. Engl. J. Med. 322, 1693–1699 (1990).

    CAS  PubMed  Google Scholar 

  149. Seidenfeld, J. et al. Epoetin treatment of anemia associated with cancer therapy: a systematic review and meta-analysis of controlled clinical trials. J. Natl Cancer Inst. 93, 1204–1214 (2001).

    CAS  PubMed  Google Scholar 

  150. Hampton, G. M. & Frierson, H. F. Classifying human cancer by analysis of gene expression. Trends Mol. Med. 9, 5–10 (2003).

    CAS  PubMed  Google Scholar 

  151. Mocellin, S., Rossi, C. R., Pilati, P. & Nitti, D. Tumour necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 16, 35–53 (2005).

    CAS  PubMed  Google Scholar 

  152. Wajant, H., Pfizenmaier, K. & Scheurich, P. TNF-related apoptosis inducing ligand (TRAIL) and its receptors in tumour surveillance and cancer therapy. Apoptosis. 7, 449–459 (2002).

    CAS  PubMed  Google Scholar 

  153. Miyazawa, K. et al. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 85, 641–649 (1995).

    CAS  PubMed  Google Scholar 

  154. Jacobs-Helber, S. M., Penta, K., Sun, Z., Lawson, A. & Sawyer, S. T. Distinct signalling from stem cell factor and erythropoietin in HCD57 cells. J. Biol. Chem. 272, 6850–6853 (1997).

    CAS  PubMed  Google Scholar 

  155. Pircher, T. J. et al. Integrative signalling by minimal erythropoietin receptor forms and c-Kit. J. Biol. Chem. 276, 8995–9002 (2001).

    CAS  PubMed  Google Scholar 

  156. Boer, A. K., Drayer, A. L. & Vellenga, E. Stem cell factor enhances erythropoietin-mediated transactivation of signal transducer and activator of transcription 5 (STAT5) via the PKA/CREB pathway. Exp. Hematol. 31, 512–520 (2003).

    CAS  PubMed  Google Scholar 

  157. Sui, X., Krantz, S. B., You, M. & Zhao, Z. Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood 92, 1142–1149 (1998).

    CAS  PubMed  Google Scholar 

  158. Endo, T. et al. Stem cell factor protects c-kit+ human primary erythroid cells from apoptosis. Exp. Hematol. 29, 833–841 (2001).

    CAS  PubMed  Google Scholar 

  159. Tan, B. L., Hong, L., Munugalavadla, V. & Kapur, R. Functional and biochemical consequences of abrogating the activation of multiple diverse early signalling pathways in Kit. Role for Src kinase pathway in Kit-induced cooperation with erythropoietin receptor. J. Biol. Chem. 278, 11686–11695 (2003).

    CAS  PubMed  Google Scholar 

  160. Caceres-Cortes, J. R., Krosl, G., Tessier, N., Hugo, P. & Hoang, T. Steel factor sustains SCL expression and the survival of purified CD34+ bone marrow cells in the absence of detectable cell differentiation. Stem Cells 19, 59–70 (2001).

    CAS  PubMed  Google Scholar 

  161. Tang, T., Prasad, K. S., Koury, M. J. & Brandt, S. J. Mitogen-activated protein kinase mediates erythropoietin-induced phosphorylation of the TAL1/SCL transcription factor in murine proerythroblasts. Biochem. J. 343, 615–620 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Lacronique, V. et al. Bcl-2 targeted overexpression into the erythroid lineage of transgenic mice delays but does not prevent the apoptosis of erythropoietin-deprived erythroid progenitors. Blood 90, 3050–3056 (1997).

    CAS  PubMed  Google Scholar 

  163. Sui, X., Krantz, S. B. & Zhao, Z. J. Stem cell factor and erythropoietin inhibit apoptosis of human erythroid progenitor cells through different signalling pathways. Br. J. Haematol. 110, 63–70 (2000).

    CAS  PubMed  Google Scholar 

  164. Chung, I. J., Dai, C. & Krantz, S. B. Stem cell factor increases the expression of FLIP that inhibits IFNg-induced apoptosis in human erythroid progenitor cells. Blood 101, 1324–1328 (2003).

    CAS  PubMed  Google Scholar 

  165. Somervaille, T. C., Linch, D. C. & Khwaja, A. Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax. Blood 98, 1374–1381 (2001).

    CAS  PubMed  Google Scholar 

  166. Paulson, R. F., Vesely, S., Siminovitch, K. A. & Bernstein, A. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1. Nature Genet. 13, 309–315 (1996).

    CAS  PubMed  Google Scholar 

  167. Nicolas, G. et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc. Natl Acad. Sci. USA 99, 4596–4601 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest 113, 1271–1276 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Freireich, E. J., Miller, A., Emerson, C. P. & Ross, J. F. The effect of inflammation on the utilization of erythrocyte and transferrin bound radioiron for red cell production. Blood 12, 972–983 (1957).

    CAS  PubMed  Google Scholar 

  170. Weinstein, D. A. et al. Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100, 3776–3781 (2002).

    CAS  PubMed  Google Scholar 

  171. Andrews, N. C. Anemia of inflammation: the cytokine-hepcidin link. J. Clin. Invest. 113, 1251–1253 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Cazzola, M. et al. Defective iron supply for erythropoiesis and adequate endogenous erythropoietin production in the anemia associated with systemic-onset juvenile chronic arthritis. Blood 87, 4824–4830 (1996).

    CAS  PubMed  Google Scholar 

  173. Nieken, J. et al. Recombinant human interleukin-6 induces a rapid and reversible anemia in cancer patients. Blood 86, 900–905 (1995).

    CAS  PubMed  Google Scholar 

  174. Atkins, M. B., Kappler, K., Mier, J. W., Isaacs, R. E. & Berkman, E. M. Interleukin-6-associated anemia: determination of the underlying mechanism. Blood 86, 1288–1291 (1995).

    CAS  PubMed  Google Scholar 

  175. Wang, G. L. & Semenza, G. L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82, 3610–3615 (1993). Iron is an essential regulatory factor for HIF1α degradation.

    CAS  PubMed  Google Scholar 

  176. Salvarani, C. et al. Effects of desferrioxamine therapy on chronic disease anemia associated with rheumatoid arthritis. Rheumatol. Int. 16, 45–48 (1996).

    CAS  PubMed  Google Scholar 

  177. Pincus, T. et al. Multicenter study of recombinant human erythropoietin in correction of anemia in rheumatoid arthritis. Am. J. Med. 89, 161–168 (1990).

    CAS  PubMed  Google Scholar 

  178. Myklebust, J. H., Blomhoff, H. K., Rusten, L. S., Stokke, T. & Smeland, E. B. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34+ hematopoietic progenitor cells. Exp. Hematol. 30, 990–1000 (2002).

    CAS  PubMed  Google Scholar 

  179. Bouscary, D. et al. Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood 101, 3436–3443 (2003).

    CAS  PubMed  Google Scholar 

  180. Carroll, M. P. et al. Erythropoietin induces Raf-1 activation and Raf-1 is required for erythropoietin-mediated proliferation. J. Biol. Chem. 266, 14964–14969 (1991).

    CAS  PubMed  Google Scholar 

  181. Van Den, A. E. et al. Tyrosine kinase receptor RON functions downstream of the erythropoietin receptor to induce expansion of erythroid progenitors. Blood 103, 4457–4465 (2004).

    Google Scholar 

  182. Von Lindern, M. et al. Protein kinase Cα controls erythropoietin receptor signalling. J. Biol. Chem. 275, 34719–34727 (2000).

    CAS  PubMed  Google Scholar 

  183. Myklebust, J. H., Smeland, E. B., Josefsen, D. & Sioud, M. Protein kinase C-α isoform is involved in erythropoietin-induced erythroid differentiation of CD34+ progenitor cells from human bone marrow. Blood 95, 510–518 (2000).

    CAS  PubMed  Google Scholar 

  184. Socolovsky, M. et al. Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98, 3261–3273 (2001). BCL-XL is an essential factor for erythroid-cell differentiatiation.

    CAS  PubMed  Google Scholar 

  185. Nagata, Y., Takahashi, N., Davis, R. J. & Todokoro, K. Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood 92, 1859–1869 (1998).

    CAS  PubMed  Google Scholar 

  186. Kolbus, A. et al. Raf-1 antagonizes erythroid differentiation by restraining caspase activation. J. Exp. Med. 196, 1347–1353 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Uddin, S., Kottegoda, S., Stigger, D., Platanias, L. C. & Wickrema, A. Activation of the Akt/FKHRL1 pathway mediates the antiapoptotic effects of erythropoietin in primary human erythroid progenitors. Biochem. Biophys. Res. Commun. 275, 16–19 (2000).

    CAS  PubMed  Google Scholar 

  188. Kashii, Y. et al. A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase–Akt activation pathway in erythropoietin signal transduction. Blood 96, 941–949 (2000).

    CAS  PubMed  Google Scholar 

  189. Dijkers, P. F. et al. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J. Cell Biol. 156, 531–542 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Zeuner, A. et al. Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell Death. Differ. 10, 905–913 (2003). SCL/TAL-1 is an essential anti-apoptotic factor in erythroid progenitor cells.

    CAS  PubMed  Google Scholar 

  191. Gregoli, P. A. & Bondurant, M. C. The roles of Bcl-XL and apopain in the control of erythropoiesis by erythropoietin. Blood 90, 630–640 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Jerry L. Spivak is a consultant for Roche

Related links

Related links

DATABASES

Entrez Gene

erythropoietin

IL-3

IL-4

IL-9

IL-12

SCF

HIF1α

HIF1β

IFNγ

IL-1

IL-6

TNFα

JAK2

FAS

MIP1α

SDF1α

TP53

Glossary

PARANEOPLASTIC SYNDROMES

Clinical disorders associated with cancer due to abnormalities of endocrine, neurological, musculoskeletal, cardiovascular, dermatological, haematological, gastrointestinal or renal function that are not directly related to direct invasion by the cancer or its metastases.

PROTHROMBOTIC

A clinical state in which there is a risk of inappropriate blood coagulation.

THROMBOPOIETIN

A polypeptide hormone that is responsible for platelet production through its stimulation of megakaryocyte proliferation and maturation.

HAEMATOCRIT

The relative volume of whole blood occupied by erythrocytes expressed as a percentage. That is, a haematocrit of 45% is equivalent to a volume of 45 ml of erythrocytes in 100 ml of blood.

CASPASE

The name of a family of aspartate-specific cysteinyl endoproteases that are involved in the initiation and propagation of apoptosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spivak, J. The anaemia of cancer: death by a thousand cuts. Nat Rev Cancer 5, 543–555 (2005). https://doi.org/10.1038/nrc1648

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1648

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing