Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Broadening horizons: the role of ferroptosis in cancer

Subjects

Abstract

The discovery of regulated cell death processes has enabled advances in cancer treatment. In the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been implicated in the development and therapeutic responses of various types of tumours. Experimental reagents (such as erastin and RSL3), approved drugs (for example, sorafenib, sulfasalazine, statins and artemisinin), ionizing radiation and cytokines (such as IFNγ and TGFβ1) can induce ferroptosis and suppress tumour growth. However, ferroptotic damage can trigger inflammation-associated immunosuppression in the tumour microenvironment, thus favouring tumour growth. The extent to which ferroptosis affects tumour biology is unclear, although several studies have found important correlations between mutations in cancer-relevant genes (for example, RAS and TP53), in genes encoding proteins involved in stress response pathways (such as NFE2L2 signalling, autophagy and hypoxia) and the epithelial-to-mesenchymal transition, and responses to treatments that activate ferroptosis. Herein, we present the key molecular mechanisms of ferroptosis, describe the crosstalk between ferroptosis and tumour-associated signalling pathways, and discuss the potential applications of ferroptosis in the context of systemic therapy, radiotherapy and immunotherapy.

Key points

  • Ferroptosis is a form of regulated cell death that mainly relies on iron-mediated oxidative damage and subsequent cell membrane damage.

  • Ferroptosis can be initiated through two major pathways: the extrinsic or transporter-dependent pathway, and the intrinsic or enzyme-regulated pathway.

  • The increase in iron accumulation, free radical production, fatty acid supply and lipid peroxidation by dedicated enzymes is critical for the induction of ferroptosis.

  • Multiple oxidative and antioxidant systems, acting together with the autophagy and membrane repair machinery, shape the process of lipid peroxidation during ferroptosis.

  • In tumorigenesis, ferroptosis has a dual role in tumour promotion and suppression, which depends on the release of damage-associated molecular patterns and the activation of immune response triggered by ferroptotic damage within the tumour microenvironment.

  • Ferroptosis affects the efficacy of chemotherapy, radiotherapy and immunotherapy, and thus combinations with agents targeting ferroptosis signalling could improve the outcomes from those therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular mechanisms of ferroptosis.
Fig. 2: Iron metabolism in ferroptosis.
Fig. 3: Role of EMT in ferroptosis.
Fig. 4: Role of ferroptosis in tumour immunity.
Fig. 5: Role of ferroptosis in radiotherapy.

Similar content being viewed by others

References

  1. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang, D. & Kroemer, G. Ferroptosis. Curr. Biol. 30, R1292–R1297 (2020).

    CAS  PubMed  Google Scholar 

  6. Chen, X., Li, J., Kang, R., Klionsky, D. J. & Tang, D. Ferroptosis: machinery and regulation. Autophagy https://doi.org/10.1080/15548627.2020.1810918 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tan, S., Schubert, D. & Maher, P. Oxytosis: a novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497–506 (2001).

    CAS  PubMed  Google Scholar 

  8. Carneiro, B. A. & El-Deiry, W. S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 17, 395–417 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  10. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    CAS  PubMed  Google Scholar 

  11. Yagoda, N. et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dpendent anion channels. Nature 447, 864–868 (2007).

    PubMed  PubMed Central  Google Scholar 

  12. Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33, 890–904.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedmann Angeli, J. P., Krysko, D. V. & Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019).

    CAS  PubMed  Google Scholar 

  15. Hassannia, B., Vandenabeele, P. & Vanden Berghe, T. Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849 (2019).

    CAS  PubMed  Google Scholar 

  16. Kuang, F., Liu, J., Kang, R. & Tang, D. Oxidative damage and antioxidant defense in ferroptosis. Front. Cell Dev. Biol. 8, 586578 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Fonseca-Nunes, A., Jakszyn, P. & Agudo, A. Iron and cancer risk–a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol. Biomarkers Prev. 23, 12–31 (2014).

    CAS  PubMed  Google Scholar 

  18. Chen, X., Xu, C., Kang, R. & Tang, D. Iron metabolism in ferroptosis. Front. Cell Dev. Biol. 8, 590226 (2020).

    PubMed  PubMed Central  Google Scholar 

  19. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y., Liua, Y., Liua, J., Kang, R. & Tang, D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem. Biophys. Res. Commun. 531, 581–587 (2020).

    PubMed  Google Scholar 

  21. Geng, N. et al. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur. Rev. Med. Pharmacol. Sci. 22, 3826–3836 (2018).

    CAS  PubMed  Google Scholar 

  22. Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown, C. W. et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell 51, 575–586.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Alvarez, S. W. et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551, 639–643 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Du, J. et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic. Biol. Med. 131, 356–369 (2019).

    CAS  PubMed  Google Scholar 

  27. Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem. Biophys. Res. Commun. 478, 838–844 (2016).

    CAS  PubMed  Google Scholar 

  28. Kim, E. H., Shin, D., Lee, J., Jung, A. R. & Roh, J. L. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett. 432, 180–190 (2018).

    CAS  PubMed  Google Scholar 

  29. Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Imoto, S. et al. Haemin-induced cell death in human monocytic cells is consistent with ferroptosis. Transfus. Apher. Sci. 57, 524–531 (2018).

    PubMed  Google Scholar 

  31. Do Van, B. et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol. Dis. 94, 169–178 (2016).

    PubMed  Google Scholar 

  32. Park, E. & Chung, S. W. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis.10, 822 (2019).

    PubMed  PubMed Central  Google Scholar 

  33. Kajarabille, N. & Latunde-Dada, G. O. Programmed cell-death by ferroptosis: antioxidants as mitigators. Int. J. Mol. Sci. 20, 4968 (2019).

    CAS  PubMed Central  Google Scholar 

  34. Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478, 1338–1343 (2016).

    CAS  PubMed  Google Scholar 

  35. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    CAS  PubMed  Google Scholar 

  36. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    CAS  PubMed  Google Scholar 

  37. Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Song, X. et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity. Curr. Biol. 28, 2388–2399.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, H. et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol. 22, 225–234 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang, D. & Kroemer, G. Peroxisome: the new player in ferroptosis. Signal Transduct. Target. Ther. 5, 273 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628–641.e26 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, C. et al. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy https://doi.org/10.1080/15548627.2020.1739447 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chu, B. et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol. 21, 579–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zou, Y. et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol. 16, 302–309 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xie, Y. et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20, 1692–1704 (2017).

    CAS  PubMed  Google Scholar 

  48. Yang, W. H. et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 28, 2501–2508.e4 (2019).

    CAS  PubMed  Google Scholar 

  49. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao, M. et al. Role of mitochondria in ferroptosis. Mol. Cell 73, 354–363.e3 (2019).

    CAS  PubMed  Google Scholar 

  51. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, X. et al. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J. Cell Physiol. 235, 3425–3437 (2020).

    CAS  PubMed  Google Scholar 

  53. Dai, E. et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat. Commun. 11, 6339 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422.e21 (2018).

    CAS  PubMed  Google Scholar 

  55. Ursini, F. & Maiorino, M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic. Biol. Med. 152, 175–185 (2020).

    CAS  PubMed  Google Scholar 

  56. Chen, D. et al. NRF2 is a major target of ARF in p53-independent tumor suppression. Mol. Cell 68, 224–232.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hayano, M., Yang, W. S., Corn, C. K., Pagano, N. C. & Stockwell, B. R. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 23, 270–278 (2016).

    CAS  PubMed  Google Scholar 

  60. Tian, T. et al. Polymorphisms in CARS are associated with gastric cancer risk: a two-stage case-control study in the Chinese population. Gastric Cancer 20, 940–947 (2017).

    CAS  PubMed  Google Scholar 

  61. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    CAS  PubMed  Google Scholar 

  62. Sato, H. et al. Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol. Chem. 280, 37423–37429 (2005).

    CAS  PubMed  Google Scholar 

  63. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    CAS  PubMed  Google Scholar 

  64. Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24, 97–108.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Canli, O. et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127, 139–148 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ran, Q. et al. Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J. Gerontol. A Biol. Sci. Med. Sci 62, 932–942 (2007).

    PubMed  Google Scholar 

  67. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    CAS  PubMed  Google Scholar 

  68. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020).

    CAS  PubMed  Google Scholar 

  70. Dai, E., Meng, L., Kang, R., Wang, X. & Tang, D. ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem. Biophys. Res. Commun. 522, 415–421 (2020).

    CAS  PubMed  Google Scholar 

  71. Dai, E. et al. AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem. Biophys. Res. Commun. 523, 966–971 (2020).

    CAS  PubMed  Google Scholar 

  72. Ryan, M. B. & Corcoran, R. B. Therapeutic strategies to target RAS-mutant cancers. Nat. Rev. Clin. Oncol. 15, 709–720 (2018).

    CAS  PubMed  Google Scholar 

  73. Hong, D. S. et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Xue, J. Y. et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 577, 421–425 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hallin, J. et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    CAS  PubMed  Google Scholar 

  76. Hu, K. et al. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J. Clin. Invest. 130, 1752–1766 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Poursaitidis, I. et al. Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep. 18, 2547–2556 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Schott, C., Graab, U., Cuvelier, N., Hahn, H. & Fulda, S. Oncogenic RAS mutants confer resistance of RMS13 rhabdomyosarcoma cells to oxidative stress-induced ferroptotic cell death. Front. Oncol. 5, 131 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Bykov, V. J. N., Eriksson, S. E., Bianchi, J. & Wiman, K. G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 18, 89–102 (2018).

    CAS  PubMed  Google Scholar 

  80. Baugh, E. H., Ke, H., Levine, A. J., Bonneau, R. A. & Chan, C. S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25, 154–160 (2018).

    CAS  PubMed  Google Scholar 

  81. Miyashita, T. et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799–1805 (1994).

    CAS  PubMed  Google Scholar 

  82. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    CAS  PubMed  Google Scholar 

  83. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).

    CAS  PubMed  Google Scholar 

  84. Wang, S. J. et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17, 366–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jennis, M. et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 30, 918–930 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, D. S. et al. Inhibiting the system xC(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat. Commun. 8, 14844 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ou, Y., Wang, S. J., Li, D., Chu, B. & Gu, W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl Acad. Sci. USA 113, E6806–E6812 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Y. et al. Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev. 31, 1243–1256 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22, 569–575 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Deacon, C. F. A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials. Diabetes Obes. Metab. 20, 34–46 (2018).

    PubMed  Google Scholar 

  91. Venkatesh, D. et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev. 34, 526–543 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rojo de la Vega, M., Chapman, E. & Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 34, 21–43 (2018).

    CAS  PubMed  Google Scholar 

  93. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun, X. et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184 (2016).

    CAS  PubMed  Google Scholar 

  95. Sun, X. et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64, 488–500 (2016).

    CAS  PubMed  Google Scholar 

  96. Anandhan, A., Dodson, M., Schmidlin, C. J., Liu, P. & Zhang, D. D. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem. Biol. 27, 436–447 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2011).

    PubMed  PubMed Central  Google Scholar 

  98. Courtney, K. D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018).

    CAS  PubMed  Google Scholar 

  99. Courtney, K. D. et al. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin. Cancer Res. 26, 793–803 (2020).

    CAS  PubMed  Google Scholar 

  100. Ivan, M. & Kaelin, W. G. Jr. The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. Mol. Cell 66, 772–779 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cho, E. A. et al. Differential in vitro and cellular effects of iron chelators for hypoxia inducible factor hydroxylases. J. Cell Biochem. 114, 864–873 (2013).

    CAS  PubMed  Google Scholar 

  102. Yang, M. et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci. Adv. 5, eaaw2238 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Yang, J. et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21, 341–352 (2020).

    PubMed  PubMed Central  Google Scholar 

  105. van Staalduinen, J., Baker, D., Ten Dijke, P. & van Dam, H. Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 37, 6195–6211 (2018).

    PubMed  Google Scholar 

  106. Bi, J. et al. Metadherin enhances vulnerability of cancer cells to ferroptosis. Cell Death Dis. 10, 682 (2019).

    PubMed  PubMed Central  Google Scholar 

  107. Muller, S. et al. CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nat. Chem. 12, 928–938 (2020).

    Google Scholar 

  108. Wu, J. et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 572, 402–406 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wenz, C. et al. Cell-cell contacts protect against t-BuOOH-induced cellular damage and ferroptosis in vitro. Arch. Toxicol. 93, 1265–1279 (2019).

    CAS  PubMed  Google Scholar 

  110. Brown, C. W., Amante, J. J., Goel, H. L. & Mercurio, A. M. The α6β4 integrin promotes resistance to ferroptosis. J. Cell Biol. 216, 4287–4297 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Roh, J. L., Kim, E. H., Jang, H. J., Park, J. Y. & Shin, D. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett. 381, 96–103 (2016).

    CAS  PubMed  Google Scholar 

  113. Ullen, A. et al. Sorafenib induces apoptosis and autophagy in prostate cancer cells in vitro. Int. J. Oncol. 37, 15–20 (2010).

    CAS  PubMed  Google Scholar 

  114. Garten, A. et al. Sorafenib-induced apoptosis in hepatocellular carcinoma is reversed by SIRT1. Int. J. Mol. Sci. 20, 4048 (2019).

    CAS  PubMed Central  Google Scholar 

  115. Lachaier, E. et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer. Res. 34, 6417–6422 (2014).

    CAS  PubMed  Google Scholar 

  116. Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Houessinon, A. et al. Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol. Cancer 15, 38 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. Feng, J. et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol. Sin. 42, 160–170 (2021).

    CAS  PubMed  Google Scholar 

  119. Fleig, W. E. et al. Prospective, randomized, double-blind comparison of benzalazine and sulfasalazine in the treatment of active ulcerative colitis. Digestion 40, 173–180 (1988).

    CAS  PubMed  Google Scholar 

  120. Combe, B. et al. Efficacy, safety and patient-reported outcomes of combination etanercept and sulfasalazine versus etanercept alone in patients with rheumatoid arthritis: a double-blind randomised 2-year study. Ann. Rheum. Dis. 68, 1146–1152 (2009).

    CAS  PubMed  Google Scholar 

  121. Rachmilewitz, D., Sharon, P., Ligumsky, M. & Zor, U. Mechanism of sulphasalazine action in ulcerative colitis. Lancet 312, 946 (1978).

    Google Scholar 

  122. Smedegard, G. & Bjork, J. Sulphasalazine: mechanism of action in rheumatoid arthritis. Br. J. Rheumatol. 34, 7–15 (1995).

    PubMed  Google Scholar 

  123. Gout, P. W., Buckley, A. R., Simms, C. R. & Bruchovsky, N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia 15, 1633–1640 (2001).

    CAS  PubMed  Google Scholar 

  124. Robert, S. M. et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci. Transl Med. 7, 289ra286 (2015).

    Google Scholar 

  125. Robe, P. A. et al. Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer 9, 372 (2009).

    PubMed  PubMed Central  Google Scholar 

  126. Nashed, M. G. et al. Behavioural effects of using sulfasalazine to inhibit glutamate released by cancer cells: a novel target for cancer-induced depression. Sci. Rep. 7, 41382 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gadangi, P. et al. The anti-inflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J. Immunol. 156, 1937–1941 (1996).

    CAS  PubMed  Google Scholar 

  128. Sehm, T. et al. Sulfasalazine impacts on ferroptotic cell death and alleviates the tumor microenvironment and glioma-induced brain edema. Oncotarget 7, 36021–36033 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Notarnicola, M. et al. Serum lipid profile in colorectal cancer patients with and without synchronous distant metastases. Oncology 68, 371–374 (2005).

    CAS  PubMed  Google Scholar 

  130. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bjarnadottir, O. et al. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. Breast Cancer Res. Treat. 138, 499–508 (2013).

    CAS  PubMed  Google Scholar 

  132. Garwood, E. R. et al. Fluvastatin reduces proliferation and increases apoptosis in women with high grade breast cancer. Breast Cancer Res. Treat. 119, 137–144 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Graf, H. et al. Chemoembolization combined with pravastatin improves survival in patients with hepatocellular carcinoma. Digestion 78, 34–38 (2008).

    CAS  PubMed  Google Scholar 

  134. Kornblau, S. M. et al. Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin+high-dose Ara-C: a phase 1 study. Blood 109, 2999–3006 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hus, M. et al. Thalidomide, dexamethasone and lovastatin with autologous stem cell transplantation as a salvage immunomodulatory therapy in patients with relapsed and refractory multiple myeloma. Ann. Hematol. 90, 1161–1166 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sondergaard, T. E. et al. A phase II clinical trial does not show that high dose simvastatin has beneficial effect on markers of bone turnover in multiple myeloma. Hematol. Oncol. 27, 17–22 (2009).

    CAS  PubMed  Google Scholar 

  137. Klayman, D. L. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228, 1049–1055 (1985).

    CAS  PubMed  Google Scholar 

  138. Kiani, B. H. et al. Artemisinin and its derivatives: a promising cancer therapy. Mol. Biol. Rep. 47, 6321–6336 (2020).

    CAS  PubMed  Google Scholar 

  139. Li, J. & Zhou, B. Biological actions of artemisinin: insights from medicinal chemistry studies. Molecules 15, 1378–1397 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Stockwin, L. H. et al. Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. Int. J. Cancer 125, 1266–1275 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Eling, N., Reuter, L., Hazin, J., Hamacher-Brady, A. & Brady, N. R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2, 517–532 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Lin, R. et al. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett. 381, 165–175 (2016).

    CAS  PubMed  Google Scholar 

  143. Ooko, E. et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine 22, 1045–1054 (2015).

    CAS  PubMed  Google Scholar 

  144. von Hagens, C. et al. Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res. Treat. 164, 359–369 (2017).

    Google Scholar 

  145. Cramer, S. L. et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017).

    CAS  PubMed  Google Scholar 

  146. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Yokoyama, C. et al. Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncol. Lett. 14, 6066–6070 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

    CAS  PubMed  Google Scholar 

  149. Wang, W. et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim, D. H., Kim, W. D., Kim, S. K., Moon, D. H. & Lee, S. J. TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells. Cell Death Dis. 11, 406 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    CAS  PubMed  Google Scholar 

  152. Tang, D., Kang, R., Coyne, C. B., Zeh, H. J. & Lotze, M. T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158–175 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wen, Q., Liu, J., Kang, R., Zhou, B. & Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 510, 278–283 (2019).

    CAS  PubMed  Google Scholar 

  154. Dai, E. et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 16, 2069–2083 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Lang, X. et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    CAS  PubMed  Google Scholar 

  158. Choi, M., Kipps, T. & Kurzrock, R. ATM mutations in cancer: therapeutic implications. Mol. Cancer Ther. 15, 1781–1791 (2016).

    CAS  PubMed  Google Scholar 

  159. Lei, G. et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30, 146–162 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Wan, C. et al. Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci. Adv. 6, eaay9789 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. 128, 3341–3355 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Zhang, Y. et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26, 623–633.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Tang, D., Chen, X., Kang, R. & Kroemer, G. Ferroptosis: molecular mechanisms and health implications. Cell Res. https://doi.org/10.1038/s41422-020-00441-1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Zhu, S. et al. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 77, 2064–2077 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Li, Y., He, X., Ding, Y., Chen, H. & Sun, L. Statin uses and mortality in colorectal cancer patients: an updated systematic review and meta-analysis. Cancer Med. 8, 3305–3313 (2019).

    PubMed  PubMed Central  Google Scholar 

  167. Song, X. et al. FANCD2 protects against bone marrow injury from ferroptosis. Biochem. Biophys. Res. Commun. 480, 443–449 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Xie, Y. et al. Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Feng, H. et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30, 3411–3423.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. O’Dwyer, P. J. et al. Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer. J. Clin. Oncol. 14, 249–256 (1996).

    PubMed  Google Scholar 

  172. Woo, J. H. et al. Elucidating compound mechanism of action by network perturbation analysis. Cell 162, 441–451 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Guo, J. et al. Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res. Treat. 50, 445–460 (2018).

    CAS  PubMed  Google Scholar 

  174. Ryu, S.-Y. et al. Randomized clinical trial of weekly vs. triweekly cisplatin-based chemotherapy concurrent with radiotherapy in the treatment of locally advanced cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 81, e577–e581 (2011).

    CAS  PubMed  Google Scholar 

  175. Nagpal, A. et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2(+ve) breast cancer metastasis. Breast Cancer Res. 21, 94 (2019).

    PubMed  PubMed Central  Google Scholar 

  176. Mai, T. T. et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 9, 1025–1033 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ma, S., Henson, E. S., Chen, Y. & Gibson, S. B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7, e2307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Louandre, C. et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer 133, 1732–1742 (2013).

    CAS  PubMed  Google Scholar 

  179. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).

    CAS  PubMed  Google Scholar 

  181. Liu, J. et al. Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem. Biol. 27, 420–435 (2020).

    PubMed  PubMed Central  Google Scholar 

  182. Gao, H. et al. Ferroptosis is a lysosomal cell death process. Biochem. Biophys. Res. Commun. 503, 1550–1556 (2018).

    CAS  PubMed  Google Scholar 

  183. Torii, S. et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem. J. 473, 769–777 (2016).

    CAS  PubMed  Google Scholar 

  184. Kuang, F., Liu, J., Li, C., Kang, R. & Tang, D. Cathepsin B is a mediator of organelle-specific initiation of ferroptosis. Biochem. Biophys. Res. Commun. 533, 1464–1469 (2020).

    CAS  PubMed  Google Scholar 

  185. Bai, Y. et al. Lipid storage and lipophagy regulates ferroptosis. Biochem. Biophys. Res. Commun. 508, 997–1003 (2019).

    CAS  PubMed  Google Scholar 

  186. Wu, Z. et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl Acad. Sci. USA 116, 2996–3005 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Chang, L. C. et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 416, 124–137 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Primm (Department of Surgery, University of Texas Southwestern Medical Center) for his critical reading of the manuscript. G.K. is supported by the Agence National de la Recherche (ANR)–Projets blancs; ANR under the frame of the ERA-Net for Research on Rare Diseases (E-Rare-2); Association pour la recherche sur le cancer; Cancéropôle Ile-de-France; Chancelerie des universités de Paris (Legs Poix); a donation from Elior; European Research Area Network on Cardiovascular Diseases (ERA-CVD, MINOTAUR); Fondation Carrefour; Fondation pour la Recherche Médicale; Gustave Roussy Odyssea, the European Union Horizon 2020 Project Oncobiome; High-end Foreign Expert Program in China (GDW20171100085 and GDW20181100051); Inserm (HTE); Institut National du Cancer; Institut Universitaire de France; LabEx Immuno-Oncology; LeDucq Foundation; Ligue contre le Cancer (équipe labellisée); RHU Torino Lumière; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumour Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript. G.K. and D.T. edited, reviewed and approved the manuscript before submission.

Corresponding authors

Correspondence to Guido Kroemer or Daolin Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks W. Gu, S. Toyokuni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

US NIH ClinicalTrials.gov database: https://www.clinicaltrials.gov

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Kang, R., Kroemer, G. et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18, 280–296 (2021). https://doi.org/10.1038/s41571-020-00462-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-00462-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer