Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Computational 3D genome modeling using Chrom3D

Abstract

Chrom3D is a computational platform for 3D genome modeling that simulates the spatial positioning of chromosome domains relative to each other and relative to the nuclear periphery. In Chrom3D, chromosomes are modeled as chains of contiguous beads, in which each bead represents a genomic domain. In this protocol, a bead represents a topologically associated domain (TAD) mapped from ensemble Hi-C data. Chrom3D takes as input data significant pairwise TAD–TAD interactions determined from a Hi-C contact matrix, and TAD interactions with the nuclear periphery, determined by ChIP-sequencing of nuclear lamins to define lamina-associated domains (LADs). Chrom3D is based on Monte Carlo simulations initiated from a starting random bead configuration. During the optimization process, TAD–TAD interactions constrain bead positions relative to each other, whereas LAD information constrains the corresponding bead toward the nuclear periphery. Optimization can be repeated many times to generate an ensemble of 3D genome models. Analyses of the models enable estimations of the radial positioning of genomic sites in the nucleus across cells in a population. Chrom3D provides opportunities to reveal spatial relationships between TADs and LADs. More generally, predictions from Chrom3D models can be experimentally tested in the laboratory. We describe the entire Chrom3D protocol for modeling a 3D diploid human genome, from the creation of input files to the final rendering of 3D genome structures. The procedure takes 18 h. Chrom3D is freely available on GitHub.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Principles of Chrom3D.
Figure 3: 3D genome models of IMR90 fibroblasts produced by Chrom3D and visualized with Chimera.
Figure 4: Local modeling using Chrom3D.
Figure 5: Heat map of radial distances (nuclear center to periphery) of beads (here, TADs) on each chromosome modeled in IMR90 fibroblasts using Chrom3D.
Figure 6: 3D genome models of IMR90 fibroblasts representing epigenomic data for histone modifications.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Dekker, J., Marti-Renom, M.A. & Mirny, L.A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    CAS  PubMed  Google Scholar 

  4. van Steensel, B. & Dekker, J. Genomics tools for unraveling chromosome architecture. Nat. Biotechnol. 28, 1089–1095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Collas, P., Lund, E.G. & Oldenburg, A.R. Closing the (nuclear) envelope on the genome: how nuclear lamins interact with promoters and modulate gene expression. BioEssays 36, 75–83 (2014).

    CAS  PubMed  Google Scholar 

  6. Lund, E.G., Duband-Goulet, I., Oldenburg, A., Buendia, B. & Collas, P. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin. Nucleus 6, 30–38 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Gesson, K. et al. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res. 26, 462–473 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Robson, M.I. et al. Tissue-specific gene repositioning by muscle nuclear membrane proteins enhances repression of critical developmental genes during myogenesis. Mol. Cell 62, 834–847 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Robson, M.I. et al. Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments. Genome Res. 27, 1126–1138 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dixon, J.R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nora, E.P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen, A.S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife 6 e25776 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Barbieri, M. et al. Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl. Acad. Sci. USA 109, 16173–16178 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bohn, M. & Heermann, D.W. Repulsive forces between looping chromosomes induce entropy-driven segregation. PLoS One 6, e14428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mateos-Langerak, J. et al. Spatially confined folding of chromatin in the interphase nucleus. Proc. Natl. Acad. Sci. USA 106, 3812–3817 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosa, A. & Everaers, R. Ring polymers in the melt state: the physics of crumpling. Phys. Rev. Lett. 112, 118302 (2014).

    PubMed  Google Scholar 

  18. Vettorel, T., Grosberg, A.Y. & Kremer, K. Statistics of polymer rings in the melt: a numerical simulation study. Phys. Biol. 6, 025013 (2009).

    PubMed  Google Scholar 

  19. Naumova, N. et al. Organization of the mitotic chromosome. Science 14, 953 (2013).

    Google Scholar 

  20. Cook, P.R. & Marenduzzo, D. Entropic organization of interphase chromosomes. J. Cell Biol. 186, 825–834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jerabek, H. & Heermann, D.W. Expression-dependent folding of interphase chromatin. PLoS One 7, e37525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90–98 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Tjong, H. et al. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. Proc. Natl. Acad. Sci. USA 113, E1663–E1672 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Paulsen, J. et al. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol. 18, 21 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Perovanovic, J. et al. Laminopathies disrupt epigenomic developmental programs and cell fate. Sci. Transl. Med. 8, 335ra58 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet 2, 292–301 (2001).

    CAS  PubMed  Google Scholar 

  27. Rao, S.S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kind, J. et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lund, E. et al. Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res. 23, 1580–1589 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Oldenburg, A. et al. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. J. Cell Biol. 216, 2731–2743 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    CAS  PubMed  Google Scholar 

  32. Stevens, T.J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Nieto, P.E. et al. Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO J. 36, 2829–2843 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bau, D. et al. The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol. 18, 107–114 (2011).

    CAS  PubMed  Google Scholar 

  35. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Serra, F. et al. Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett. 589, 2987–2995 (2015).

    CAS  PubMed  Google Scholar 

  37. Szalaj, P. et al. An integrated 3-dimensional genome modeling engine for data-driven simulation of spatial genome organization. Genome Res. 26, 1697–1709 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Russel, D. et al. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 10, e1001244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bau, D. & Marti-Renom, M.A. Genome structure determination via 3C-based data integration by the Integrative Modeling Platform. Methods 58, 300–306 (2012).

    CAS  PubMed  Google Scholar 

  40. Serra, F. et al. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput. Biol. 13, e1005665 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Q. et al. The three-dimensional genome organization of Drosophila melanogaster through data integration. Genome Biol. 18, 145 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Dai, C. et al. Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities. Nat. Commun. 7, 11549 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lund, E.G., Oldenburg, A.R. & Collas, P. Enriched Domain Detector: a program for detection of wide genomic enrichment domains robust against local variations. Nucleic Acids Res. 42, e92 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Durand, N.C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gundersen, S. et al. Identifying elemental genomic track types and representing them uniformly. BMC Bioinformatics 12, 494 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. Yang, Z. et al. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol. 179, 269–278 (2012).

    CAS  PubMed  Google Scholar 

  48. de Nooijer, S., Wellink, J., Mulder, B. & Bisseling, T. Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Res. 37, 3558–3568 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lesne, A., Riposo, J., Roger, P., Cournac, A. & Mozziconacci, J. 3D genome reconstruction from chromosomal contacts. Nat. Methods 11, 1141–1143 (2014).

    CAS  PubMed  Google Scholar 

  50. Rousseau, M., Fraser, J., Ferraiuolo, M.A., Dostie, J. & Blanchette, M. Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics 12, 414–412 (2011).

    PubMed  PubMed Central  Google Scholar 

  51. Bau, D. & Marti-Renom, M.A. Structure determination of genomic domains by satisfaction of spatial restraints. Chromosome Res. 19, 25–35 (2011).

    CAS  PubMed  Google Scholar 

  52. Mifsud, B. et al. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. PLoS One 12, e0174744 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Google Scholar 

  55. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.C. is supported by the Research Council of Norway, the Norwegian Cancer Society, South-East Health Norway, The Norwegian Center for Stem Cell Research and the University of Oslo.

Author information

Authors and Affiliations

Authors

Contributions

J.P. and T.M.L.A. wrote code, performed data analysis and wrote the manuscript. J.P. conceptualized and developed Chrom3D. P.C. supervised the work and wrote the manuscript.

Corresponding authors

Correspondence to Jonas Paulsen or Philippe Collas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulsen, J., Liyakat Ali, T. & Collas, P. Computational 3D genome modeling using Chrom3D. Nat Protoc 13, 1137–1152 (2018). https://doi.org/10.1038/nprot.2018.009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics