Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Simultaneous lipid and content mixing assays for in vitro reconstitution studies of synaptic vesicle fusion

Abstract

This protocol describes reconstitution assays to study how the neurotransmitter release machinery triggers Ca2+-dependent synaptic vesicle fusion. The assays monitor fusion between proteoliposomes containing the synaptic vesicle SNARE synaptobrevin (with or without the Ca2+ sensor synaptotagmin-1) and proteoliposomes initially containing the plasma membrane SNAREs syntaxin-1 and soluble NSF attachment protein (SNAP)-25. Lipid mixing (from fluorescence de-quenching of Marina-Blue-labeled lipids) and content mixing (from development of fluorescence resonance energy transfer (FRET) between phycoerythrin-biotin (PhycoE–Biotin) and Cy5–streptavidin trapped in the two proteoliposome populations) are measured simultaneously to ensure that true, nonleaky membrane fusion is monitored. This protocol is based on a method developed to study yeast vacuolar fusion. In contrast to other protocols used to study the release machinery, this assay incorporates N-ethylmaleimide sensitive factor (NSF) and α-SNAP, which disassemble syntaxin-1 and SNAP-25 heterodimers. As a result, fusion requires Munc18-1, which binds to the released syntaxin-1, and Munc13-1, which, together with Munc18-1, orchestrates SNARE complex assembly. The protocol can be readily adapted to investigation of other types of intracellular membrane fusion by using appropriate alternative proteins. Total time required for one round of the assay is 4 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Working model of neurotransmitter release.
Figure 2: Diagram summarizing the overall approach followed in the lipid and content mixing assays described here.
Figure 3: Typical results obtained in our reconstitution experiments.
Figure 4: Analysis of liposome size distribution by DLS.

Similar content being viewed by others

References

  1. Rizo, J. & Sudhof, T.C. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices-guilty as charged? Annu. Rev. Cell Dev. Biol. 28, 279–308 (2012).

    Article  CAS  Google Scholar 

  2. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  3. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  4. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  Google Scholar 

  5. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  6. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).

    Article  CAS  Google Scholar 

  7. Banerjee, A., Barry, V.A., DasGupta, B.R. & Martin, T.F. N-ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem. 271, 20223–20226 (1996).

    Article  CAS  Google Scholar 

  8. Ma, C., Li, W., Xu, Y. & Rizo, J. Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 18, 542–549 (2011).

    Article  CAS  Google Scholar 

  9. Ma, C., Su, L., Seven, A.B., Xu, Y. & Rizo, J. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339, 421–425 (2013).

    Article  CAS  Google Scholar 

  10. Baker, R.W. et al. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349, 1111–1114 (2015).

    Article  CAS  Google Scholar 

  11. Gracheva, E.O., Hadwiger, G., Nonet, M.L. & Richmond, J.E. Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density. Neurosci. Lett. 444, 137–142 (2008).

    Article  CAS  Google Scholar 

  12. Han, Y., Kaeser, P.S., Sudhof, T.C. & Schneggenburger, R. RIM determines Ca(2)+ channel density and vesicle docking at the presynaptic active zone. Neuron 69, 304–316 (2011).

    Article  CAS  Google Scholar 

  13. Augustin, I., Rosenmund, C., Sudhof, T.C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  Google Scholar 

  14. Richmond, J.E., Davis, W.S. & Jorgensen, E.M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964 (1999).

    Article  CAS  Google Scholar 

  15. Aravamudan, B., Fergestad, T., Davis, W.S., Rodesch, C.K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965–971 (1999).

    Article  CAS  Google Scholar 

  16. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl. Acad. Sci. USA 99, 9037–9042 (2002).

    Article  CAS  Google Scholar 

  17. Koushika, S.P. et al. A post-docking role for active zone protein Rim. Nat. Neurosci. 4, 997–1005 (2001).

    Article  CAS  Google Scholar 

  18. Schoch, S. et al. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).

    Article  CAS  Google Scholar 

  19. Sudhof, T.C. The presynaptic active zone. Neuron 75, 11–25 (2012).

    Article  CAS  Google Scholar 

  20. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  CAS  Google Scholar 

  21. Ann, K., Kowalchyk, J.A., Loyet, K.M. & Martin, T.F. Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J. Biol. Chem. 272, 19637–19640 (1997).

    Article  CAS  Google Scholar 

  22. Jockusch, W.J. et al. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell 131, 796–808 (2007).

    Article  CAS  Google Scholar 

  23. Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71–81 (2001).

    Article  CAS  Google Scholar 

  24. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  25. Brunger, A.T., Cipriano, D.J. & Diao, J. Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit. Rev. Biochem. Mol. Biol. 50, 231–241 (2015).

    Article  CAS  Google Scholar 

  26. van den Bogaart, G. et al. One SNARE complex is sufficient for membrane fusion. Nat. Struct. Mol. Biol. 17, 358–364 (2010).

    Article  CAS  Google Scholar 

  27. Kyoung, M. et al. In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc. Natl. Acad. Sci. USA 108, E304–E313 (2011).

    Article  CAS  Google Scholar 

  28. Zick, M. & Wickner, W.T. A distinct tethering step is vital for vacuole membrane fusion. Elife 3, e03251 (2014).

    Article  Google Scholar 

  29. Liu, X. et al. Functional synergy between the Munc13 C-terminal C1 and C2 domains. Elife 5, e13696 (2016).

    Article  Google Scholar 

  30. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    Article  CAS  Google Scholar 

  31. Rizo, J. & Xu, J. The synaptic vesicle release machinery. Annu. Rev. Biophys. 44, 339–367 (2015).

    Article  CAS  Google Scholar 

  32. Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  Google Scholar 

  33. Xue, M., Ma, C., Craig, T.K., Rosenmund, C. & Rizo, J. The Janus-faced nature of the C(2)B domain is fundamental for synaptotagmin-1 function. Nat. Struct. Mol. Biol. 15, 1160–1168 (2008).

    Article  CAS  Google Scholar 

  34. Chicka, M.C., Hui, E., Liu, H. & Chapman, E.R. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+. Nat. Struct. Mol. Biol. 15, 827–835 (2008).

    Article  CAS  Google Scholar 

  35. Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E. & Melia, T.J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007).

    Article  CAS  Google Scholar 

  36. Chan, Y.H., van, L.B. & Boxer, S.G. Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc. Natl. Acad. Sci. USA 106, 979–984 (2009).

    Article  CAS  Google Scholar 

  37. Fix, M. et al. Imaging single membrane fusion events mediated by SNARE proteins. Proc. Natl. Acad. Sci. USA 101, 7311–7316 (2004).

    Article  CAS  Google Scholar 

  38. Wang, T., Smith, E.A., Chapman, E.R. & Weisshaar, J.C. Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1-5 ms resolution. Biophys. J. 96, 4122–4131 (2009).

    Article  CAS  Google Scholar 

  39. Bowen, M.E., Weninger, K., Brunger, A.T. & Chu, S. Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). Biophys. J. 87, 3569–3584 (2004).

    Article  CAS  Google Scholar 

  40. Domanska, M.K., Kiessling, V., Stein, A., Fasshauer, D. & Tamm, L.K. Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion. J. Biol. Chem. 284, 32158–32166 (2009).

    Article  CAS  Google Scholar 

  41. Yoon, T.Y., Okumus, B., Zhang, F., Shin, Y.K. & Ha, T. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA 103, 19731–19736 (2006).

    Article  CAS  Google Scholar 

  42. Lee, H.K. et al. Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328, 760–763 (2010).

    Article  CAS  Google Scholar 

  43. Lai, Y. et al. Fusion pore formation and expansion induced by Ca2+ and synaptotagmin 1. Proc. Natl. Acad. Sci. USA 110, 1333–1338 (2013).

    Article  CAS  Google Scholar 

  44. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

    Article  CAS  Google Scholar 

  45. Misura, K.M., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404, 355–362 (2000).

    Article  CAS  Google Scholar 

  46. Dulubova, I. et al. Munc18-1 binds directly to the neuronal SNARE complex. Proc. Natl. Acad. Sci. USA 104, 2697–2702 (2007).

    Article  CAS  Google Scholar 

  47. Richmond, J.E., Weimer, R.M. & Jorgensen, E.M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341 (2001).

    Article  CAS  Google Scholar 

  48. Basu, J. et al. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol. 12, 1017–1018 (2005).

    Article  CAS  Google Scholar 

  49. Yang, X. et al. Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nat. Struct. Mol. Biol. 22, 547–554 (2015).

    Article  CAS  Google Scholar 

  50. Weber, T. et al. SNAREpins are functionally resistant to disruption by NSF and alphaSNAP. J. Cell Biol. 149, 1063–1072 (2000).

    Article  CAS  Google Scholar 

  51. Xu, H., Jun, Y., Thompson, J., Yates, J. & Wickner, W. HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO J. 29, 1948–1960 (2010).

    Article  CAS  Google Scholar 

  52. Zick, M., Orr, A., Schwartz, M.L., Merz, A.J. & Wickner, W.T. Sec17 can trigger fusion of trans-SNARE paired membranes without Sec18. Proc. Natl. Acad. Sci. USA 112, E2290–E2297 (2015).

    Article  CAS  Google Scholar 

  53. Yu, H. et al. Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc. Natl. Acad. Sci. USA 110, E3271–E3280 (2013).

    Article  CAS  Google Scholar 

  54. Zucchi, P.C. & Zick, M. Membrane fusion catalyzed by a Rab, SNAREs, and SNARE chaperones is accompanied by enhanced permeability to small molecules and by lysis. Mol. Biol. Cell 22, 4635–4646 (2011).

    Article  CAS  Google Scholar 

  55. Sudhof, T.C. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675–690 (2013).

    Article  CAS  Google Scholar 

  56. Chen, X. et al. SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys. J. 90, 2062–2074 (2006).

    Article  CAS  Google Scholar 

  57. Arac, D. et al. Close membrane-membrane proximity induced by Ca(2+)-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13, 209–217 (2006).

    Article  CAS  Google Scholar 

  58. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  Google Scholar 

  59. Stein, A., Radhakrishnan, A., Riedel, D., Fasshauer, D. & Jahn, R. Synaptotagmin activates membrane fusion through a Ca(2+)-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol. 14, 904–911 (2007).

    Article  CAS  Google Scholar 

  60. Zhao, M. et al. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518, 61–67 (2015).

    Article  CAS  Google Scholar 

  61. Rigaud, J.L., Pitard, B. & Levy, D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim. Biophys. Acta 1231, 223–246 (1995).

    Article  Google Scholar 

  62. Li, W. et al. The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Structure 19, 1443–1455 (2011).

    Article  CAS  Google Scholar 

  63. Shin, O.H. et al. Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nat. Struct. Mol. Biol. 17, 280–288 (2010).

    Article  CAS  Google Scholar 

  64. Xu, J., Brewer, K.D., Perez-Castillejos, R. & Rizo, J. Subtle interplay between synaptotagmin and complexin binding to the SNARE complex. J. Mol. Biol. 425, 3461–3475 (2013).

    Article  CAS  Google Scholar 

  65. Stewart, J.C.M. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal. Biochem. 104, 10–14 (1980).

    Article  CAS  Google Scholar 

  66. Brewer, K.D. et al. Dynamic binding mode of a synaptotagmin-1-SNARE complex in solution. Nat. Struct. Mol. Biol. 22, 555–564 (2015).

    Article  CAS  Google Scholar 

  67. Zhou, Q. et al. Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature 525, 62–67 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Zick and W. Wickner for discussions on how to set up the simultaneous lipid and content mixing assays. This work was supported by grant I-1304 from the Welch Foundation (to J.R.) and by NIH Research Project Award R35 NS097333 (to J.R.), and continues work supported previously by NIH grants NS037200 and NS049044 (to J.R.).

Author information

Authors and Affiliations

Authors

Contributions

X.L. and A.B.S. developed the protocol described here. C.M. and L.S. developed the earlier protocol that used different lipid and content mixing assays. J.X. and V.E. provided purified Munc13-1 fragments. J.R. helped to develop the protocol and coordinated the project. X.L. and J.R. wrote the manuscript.

Corresponding authors

Correspondence to Xiaoxia Liu or Josep Rizo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Expression and purification of recombinant proteins. (PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Seven, A., Xu, J. et al. Simultaneous lipid and content mixing assays for in vitro reconstitution studies of synaptic vesicle fusion. Nat Protoc 12, 2014–2028 (2017). https://doi.org/10.1038/nprot.2017.068

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.068

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing