Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading

Abstract

RNAi is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We include a method for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. This protocol facilitates the characterization of nuclear RNAi, and it can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic of the in vitro Ago2 loading assay.
Figure 3: Quality assessment of subcellular fractionation.
Figure 4: In vitro Ago2 loading assay and typical results from Step 9B.

Similar content being viewed by others

References

  1. Wilson, R.C. & Doudna, J.A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42, 217–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Janowski, B.A. et al. Inhibiting gene expression at transcription start sites in chromosomal DNA with antigen RNAs. Nat. Chem. Bio. 1, 216–222 (2005).

    Article  CAS  Google Scholar 

  6. Castanotto, D. et al. Short hairpin RNA-directed cytosine (CpG) methylation of the RASSF1A gene promoter in HeLa cells. Mol. Ther. 12, 179–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Ting, A.H., Schuebel, K.E., Herman, J.G. & Baylin, S.B. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat. Genet. 37, 906–910 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Napoli, S., Pastori, C., Magistri, M., Carbone, G.M. & Catapano, C.V. Promoter-specific transcriptional interference and c-myc gene silencing by siRNAs in human cells. EMBO J. 28, 1708–1719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, D.H., Villeneuve, L.M., Morris, K.V. & Rossi, J.J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 13, 793–797 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Li, L.C. et al. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl. Acad. Sci. USA 103, 17337–17342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Janowski, B.A. et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat. Chem. Biol. 3, 166–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Matsui, M. et al. Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 41, 10086–10109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, V. et al. RNAa is conserved in mammalian cells. PLoS ONE 5, e8848 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu, J., Hu, J. & Corey, D.R. Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing. Nucleic Acids Res. 40, 1240–1250 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Allo, M. et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16, 717–724 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Janowski, B.A. et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat. Struct. Mol. Biol. 13, 787–792 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Chu, Y., Yue, X., Younger, S.T., Janowski, B.A. & Corey, D.R. Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res. 38, 7736–7748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vickers, T.A. et al. Efficient reduction of target RNAs by small interfering RNA and RNase H–dependent antisense agents: a comparative analysis. J. Biol. Chem. 278, 7108–7118 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Zeng, Y. & Cullen, B.R. RNA interference in human cells is restricted to the cytoplasm. RNA 8, 855–860 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ikeda, K. et al. Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using monoclonal antibody. J. Immunol. Methods 317, 38–44 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stalder, L. et al. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J. 32, 1115–1127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ando, Y. et al. Nuclear pore complex protein mediated nuclear localization of dicer protein in human cells. PLoS ONE 6, E23385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doyle, M. et al. The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal. RNA 19, 1238–1252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohrt, T., Muetze, J., Svoboda, P. & Schwille, P. Intracellular localization and routing of miRNA and RNAi pathway components. Curr. Top. Med. Chem. 12, 79–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Rudel, S., Flatley, A., Weinmann, L., Kremmer, E. & Meister, G. A multifunctional human Argonaute2-specific monoclonal antibody. RNA 14, 1244–1253 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14, 897–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Weinmann, L. et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136, 496–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Gagnon, K.T., Li, L., Chu, Y., Janowski, B.A. & Corey, D.R. RNAi factors are present and active in human cell nuclei. Cell Rep. 6, 211–221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holding, C. RNAi active in the nucleus? The Scientist http://www.the-scientist.com/?articles.view/articleNo/23231/title/RNAi-active-in-the-nucleus-/ (2005).

  30. Hetzer, M.W. The nuclear envelope. Cold Spring Harb. Perspect. Biol. 2, a000539 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Michelson, U. & von Hagen, J. Isolation of subcellular organelles and structures. Methods Enzymol. 463, 306–328 (2009).

    Google Scholar 

  32. Greenberg, M.E. & Bender, T.P. Identification of newly transcribed RNA. Curr. Protoc. Mol. Biol. 78, 4.10.11–14.10.12 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the US National Institutes of Health (1F32HD060377/KTG, GM 73042/DRC and GM85080/BAJ), the Welch Foundation (I-1244/DRC) and the Cancer Prevention and Research Institute of Texas (RP120311/BAJ).

Author information

Authors and Affiliations

Authors

Contributions

K.T.G. and L.L. designed and performed the experiments, including optimization of subcellular fractionation and development of the in vitro Argonaute loading assay. K.T.G., L.L., B.A.J. and D.R.C. all participated in the writing of this manuscript.

Corresponding author

Correspondence to David R Corey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagnon, K., Li, L., Janowski, B. et al. Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat Protoc 9, 2045–2060 (2014). https://doi.org/10.1038/nprot.2014.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.135

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing