Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of a transgenic ORFeome library in Drosophila

Abstract

Overexpression screens can be used to explore gene function in Drosophila melanogaster, but to demonstrate their full potential, comprehensive and systematic collections of fly strains are required. Here we provide a protocol for high-throughput cloning of Drosophila open-reading frames (ORFs) that are regulated by upstream activation sequences (UAS sites); the resulting GAL4-inducible UAS-ORF plasmid library is then used to generate Drosophila strains by ΦC31 integrase–mediated site-specific integration. We also provide details for FLP/FRT-mediated in vivo exchange of epitope tags (or regulatory regions) in the ORF library strains, which further extends the potential applications of the library. These transgenic UAS-ORF strains are a useful resource to complement and validate genetic experiments performed with loss-of-function mutants and RNA interference (RNAi) lines. The duration of the complete protocol strongly depends on the number of ORFs required, but embryos can be injected and balanced fly stocks can be established within 7–8 weeks for a few genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart for creating an UAS-ORFeome library.
Figure 2: Schematic representation of the ORF library vector pGW-HA.attB and the ΦC31 integration.
Figure 3: ORF cloning and sequencing strategy.
Figure 4: Schematic for N- and C-terminal in vivo swapping.
Figure 5: Crossing scheme for establishing UAS-ORF strains.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  Google Scholar 

  2. Miklos, G.L. & Rubin, G.M. The role of the genome project in determining gene function: insights from model organisms. Cell 86, 521–529 (1996).

    Article  CAS  Google Scholar 

  3. Rorth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93, 12418–12422 (1996).

    Article  CAS  Google Scholar 

  4. Toba, G. et al. The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics 151, 725–737 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bellen, H.J. et al. The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188, 731–743 (2011).

    Article  CAS  Google Scholar 

  6. Xu, R. et al. A large-scale functional approach to uncover human genes and pathways in Drosophila. Cell Res. 18, 1114–1127 (2008).

    Article  CAS  Google Scholar 

  7. Bischof, J. et al. A versatile platform for creating a comprehensive UAS-ORFeome library in Drosophila. Development 140, 2434–2442 (2013).

    Article  CAS  Google Scholar 

  8. Schertel, C. et al. Systematic screening of a Drosophila ORF library in vivo uncovers Wnt/Wg pathway components. Dev. Cell 25, 207–219 (2013).

    Article  CAS  Google Scholar 

  9. Taxis, C., Stier, G., Spadaccini, R. & Knop, M. Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol. Syst. Biol. 5, 267 (2009).

    Article  Google Scholar 

  10. Hudry, B., Viala, S., Graba, Y. & Merabet, S. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Biol. 9, 5 (2011).

    Article  CAS  Google Scholar 

  11. Prelich, G. Gene overexpression: uses, mechanisms, and interpretation. Genetics 190, 841–854 (2012).

    Article  CAS  Google Scholar 

  12. Gibson, T.J., Seiler, M. & Veitia, R.A. The transience of transient overexpression. Nat. Methods 10, 715–721 (2013).

    Article  CAS  Google Scholar 

  13. Venken, K.J., Simpson, J.H. & Bellen, H.J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72, 202–230 (2011).

    Article  CAS  Google Scholar 

  14. Brown, J.B. et al. Diversity and dynamics of the Drosophila transcriptome. Nature 10.1038/nature12962 (2014).

  15. Yu, C. et al. Development of expression-ready constructs for generation of proteomics libraries. Methods Mol. Biol. 723, 257–272 (2011).

    Article  CAS  Google Scholar 

  16. Cavener, D.R. Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15/4, 1353–1361 (1987).

    Article  Google Scholar 

  17. DeAngelis, M.M., Wang, D.G. & Hawkins, T.L. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res. 23, 4742–4743 (1995).

    Article  CAS  Google Scholar 

  18. Massouras, A., Decouttere, F., Hens, K. & Deplancke, B. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data. Nucleic Acids Res. 38, W378–W384 (2010).

    Article  CAS  Google Scholar 

  19. Stadler, C. et al. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods 10, 315–323 (2013).

    Article  CAS  Google Scholar 

  20. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  Google Scholar 

  21. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  Google Scholar 

  22. Bateman, J.R., Lee, A.M. & Wu, C.T. Site-specific transformation of Drosophila via φC31 integrase-mediated cassette exchange. Genetics 173, 769–777 (2006).

    Article  CAS  Google Scholar 

  23. Venken, K.J., He, Y., Hoskins, R.A. & Bellen, H.J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  Google Scholar 

  24. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  Google Scholar 

  25. Fish, M.P., Groth, A.C., Calos, M.P. & Nusse, R. Creating transgenic Drosophila by microinjecting the site-specific φC31 integrase mRNA and a transgene-containing donor plasmid. Nat. Protoc. 2, 2325–2331 (2007).

    Article  CAS  Google Scholar 

  26. Schlake, T. & Bode, J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33, 12746–12751 (1994).

    Article  CAS  Google Scholar 

  27. Dahman, C. Drosophila. Methods and Protocols Vol. 420 (Humana Press, 2008).

  28. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010 /10.1101/pdb.prot5448 (2010).

  29. Gloor, G.B. et al. Type I repressors of P element mobility. Genetics 135, 81 (1993) 95.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Saka, Y., Hagemann, A.I., Piepenburg, O. & Smith, J.C. Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus. Development 134, 4209–4218 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge J. Taipale, who co-initiated the pilot library project. We thank E. Furger and C. Schertel for substantial contributions to molecular cloning, library construction and overexpression analysis; C. Bastos, E. Escher, A. McLeod, S. Miettinen and N. Wang for technical assistance; J.-P. Vincent for FRT details; R. Baumgartner for BiFC reagents; and K. Hens and B. Deplancke for some specific pGW-HA.attB expression clones. This work was supported by the National Center of Competence in Research 'Frontiers in Genetics', the Swiss National Science Foundation, the Kanton of Zürich, the European Research Council and the Scottish Universities Life Sciences Alliance and by the UK Biotechnology and Biological Sciences Research Council (BB/J006424/1).

Author information

Authors and Affiliations

Authors

Contributions

K.B. conceived of and coordinated the project, M.B. coordinated and supervised the molecular cloning and data analysis and J.B. coordinated and supervised the creation of the fly library. The experiments were performed by J.B., E.M.S. and M.B., who together wrote the paper.

Corresponding authors

Correspondence to Mikael Björklund or Konrad Basler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bischof, J., Sheils, E., Björklund, M. et al. Generation of a transgenic ORFeome library in Drosophila. Nat Protoc 9, 1607–1620 (2014). https://doi.org/10.1038/nprot.2014.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.105

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research