Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics

Abstract

The rise of optogenetics provides unique opportunities to advance materials and biomedical engineering, as well as fundamental understanding in neuroscience. This protocol describes the fabrication of optoelectronic devices for studying intact neural systems. Unlike optogenetic approaches that rely on rigid fiber optics tethered to external light sources, these novel devices carry wirelessly powered microscale, inorganic light-emitting diodes (μ-ILEDs) and multimodal sensors inside the brain. We describe the technical procedures for construction of these devices, their corresponding radiofrequency power scavengers and their implementation in vivo for experimental application. In total, the timeline of the procedure, including device fabrication, implantation and preparation to begin in vivo experimentation, can be completed in 3–8 weeks. Implementation of these devices allows for chronic (tested for up to 6 months) wireless optogenetic manipulation of neural circuitry in animals navigating complex natural or home-cage environments, interacting socially, and experiencing other freely moving behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication procedure for injectable μ-ILEDs.
Figure 2: Procedure for fabrication of injectable, multifunctional electronics.
Figure 3: Multifunctional sensors and optoelectronics.
Figure 4: Wireless operation and equipment.
Figure 5: Surgical procedure for injection of virus and μ-ILED devices into mouse brain.
Figure 6: μ-ILED device recycling and re-fabrication for subsequent use.
Figure 7: Expected results after viral and device injection.

Similar content being viewed by others

References

  1. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  Google Scholar 

  2. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  Google Scholar 

  3. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  CAS  Google Scholar 

  4. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  5. Carter, M.E et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).

    Article  CAS  Google Scholar 

  6. Stuber, G.D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  Google Scholar 

  7. Jennings, J.H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228 (2013).

    Article  CAS  Google Scholar 

  8. Kim, S.-Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219–223 (2013).

    Article  CAS  Google Scholar 

  9. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  Google Scholar 

  10. Tye, K.M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  Google Scholar 

  11. Kim, T.-i. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  Google Scholar 

  12. Kim, T.-i. et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small 8, 1643–1649 (2012).

    Article  CAS  Google Scholar 

  13. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article  CAS  Google Scholar 

  14. Kim, T.-i., Kim, R.-H. & Rogers, J.A. Microscale inorganic light-emitting diodes on flexible and stretchable substrates. IEEE Photonics J. 4, 607–612 (2012).

    Article  Google Scholar 

  15. Al-Hasani, R., McCall, J.G., Foshage, A.M. & Bruchas, M.R. Locus coeruleus kappa opioid receptors modulate reinstatement of cocaine place preference through a noradrenergic mechanism. Neuropsychopharmacology 38, 2484–2497 (2013).

    Article  CAS  Google Scholar 

  16. Li, Y. et al. Thermal analysis of injectable, cellular-scale optoelectronics with pulsed power. Proc. R. Soc. Math. Phys. Eng. Sci. 469, 20130142 (2013).

    Article  Google Scholar 

  17. Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    Article  CAS  Google Scholar 

  18. Tao, H. et al. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 24, 1067–1072 (2012).

    Article  CAS  Google Scholar 

  19. Cao, H., Gu, L., Mohanty, S.K. & Chiao, J.-C. An integrated μLED optrode for optogenetic stimulation and electrical recording. IEEE Trans. Biomed. Eng. 60, 225–229 (2013).

    Article  Google Scholar 

  20. Wentz, C.T. et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8, 046021 (2011).

    Article  Google Scholar 

  21. Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M. & Hirase, H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70, 124–127 (2011).

    Article  Google Scholar 

  22. Zhao, Y., Larimer, P., Pressler, R.T., Strowbridge, B.W. & Burda, C. Wireless activation of neurons in brain slices using nanostructured semiconductor photoelectrodes. Angew. Chem. Int. Ed. 48, 2407–2410 (2009).

    Article  CAS  Google Scholar 

  23. Sparta, D.R. et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2011).

    Article  Google Scholar 

  24. Zorzos, A.N., Boyden, E.S. & Fonstad, C.G. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35, 4133–4135 (2010).

    Article  Google Scholar 

  25. Zorzos, A.N., Scholvin, J., Boyden, E.S. & Fonstad, C.G. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt. Lett. 37, 4841–4843 (2012).

    Article  Google Scholar 

  26. Stark, E., Koos, T. & Buzsaki, G. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 108, 349–363 (2012).

    Article  Google Scholar 

  27. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    Article  CAS  Google Scholar 

  28. Park, S.-I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    Article  CAS  Google Scholar 

  29. Diester, I. et al. An optogenetic toolbox designed for primates. Nat. Neurosci. 14, 387–397 (2011).

    Article  CAS  Google Scholar 

  30. Gerits, A. & Vanduffel, W. Optogenetics in primates: a shining future? Trends Genet. (2013); 29, 403–411.

    Article  CAS  Google Scholar 

  31. Cavanaugh, J. et al. Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76, 901–907 (2012).

    Article  CAS  Google Scholar 

  32. Ruiz, O. et al. Optogenetics through windows on the brain in the nonhuman primate. J. Neurophysiol. (2013); 110, 1455–1467.

    Article  CAS  Google Scholar 

  33. Witten, I.B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    Article  CAS  Google Scholar 

  34. Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    Article  CAS  Google Scholar 

  35. Kravitz, A.V., Owen, S.F. & Kreitzer, A.C. Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res. 1511, 21–32 (2013).

    Article  CAS  Google Scholar 

  36. Szuts, T.A. et al. A wireless multi-channel neural amplifier for freely moving animals. Nat. Neurosci. 14, 263–269 (2011).

    Article  CAS  Google Scholar 

  37. Harrison, R.R. et al. A wireless neural/EMG telemetry system for freely moving insects. Circuits Syst. ISCAS Proc. 2010 IEEE Int. Symp. 2940–2943 (2010).

  38. Adamantidis, A.R. et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J. Neurosci. Off. J. Soc. Neurosci. 31, 10829–10835 (2011).

    Article  CAS  Google Scholar 

  39. Sparta, D.R., Jennings, J.H., Ung, R.L. & Stuber, G.D. Optogenetic strategies to investigate neural circuitry engaged by stress. Behav. Brain Res. 15, 19–25 (2013).

    Article  Google Scholar 

  40. Tye, K.M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012).

    Article  CAS  Google Scholar 

  41. Cold Spring Harbor Laboratory Press. Artificial cerebrospinal fluid (ACSF). Cold Spring Harb. Protoc. 2011 pdb.rec065730 (2011).

  42. Du Hoffmann, J., Kim, J.J. & Nicola, S.M. An inexpensive drivable cannulated microelectrode array for simultaneous unit recording and drug infusion in the same brain nucleus of behaving rats. J. Neurophysiol. 106, 1054–1064 (2011).

    Article  Google Scholar 

  43. Wong, W.S. et al. InxGa1–xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off. Appl. Phys. Lett. 77, 2822–2824 (2000).

    Article  CAS  Google Scholar 

  44. Cardin, J.A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Article  CAS  Google Scholar 

  45. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  Google Scholar 

  46. Osakada, F. et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71, 617–631 (2011).

    Article  CAS  Google Scholar 

  47. Osakada, F. & Callaway, E.M. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8, 1583–1601 (2013).

    Article  Google Scholar 

  48. Clark, J.J. et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7, 126–129 (2009).

    Article  Google Scholar 

  49. Kim, R.-H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010).

    Article  CAS  Google Scholar 

  50. Song, Y.M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the US National Institutes of Health Common Fund; the National Institute on Drug Abuse (NIDA) grant no. R01DA037152 (M.R.B.); NIDA grant no. R00DA025182 (M.R.B.); National Institute of Neurological Disorders and Stroke (NINDS) grant no. R01NS081707 (M.R.B., J.A.R.); National Institute of Mental Health (NIMH) grant no. F31MH101956 (J.G.M.); the McDonnell Center for Systems Neuroscience (M.R.B.); a National Security Science and Engineering Faculty Fellowship of Energy (J.A.R.); the US Department of Energy, Division of Materials Sciences under award no. DE-FG02-07ER46471 (J.A.R.); the Materials Research Laboratory and Center for Microanalysis of Materials (DE-FG02-07ER46453) (J.A.R.) and the Washington University in St. Louis Division of Biological and Biomedical Sciences (J.G.M.); and the Institute for Basic Science (IBS) (T-i.K.) and National Research foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning (2009-0083540) in Korea (T-i.K.). We thank H. Tao (Tufts University) and S. Hwang (University of Illinois at Urbana-Champaign) for their help in the preparation of silk solution and for valuable discussions. We thank A.M. Foshage, E.R. Siuda and other members of the Bruchas laboratory, the laboratory of R.W. Gereau, IV (Washington University in St. Louis) and the laboratory of G.D. Stuber (University of North Carolina) for helpful discussion and technical advice. We also thank K. Deisseroth (Stanford University) for the channelrhodopsin-2 (H134) constructs, the Stuber laboratory for the TH-IRES-Cre mice, the Washington University in St. Louis Bakewell Neuroimaging Laboratory Core, the Washington University in St. Louis Machine Shop and the Washington University in St. Louis` Hope Center Viral Vector Core.

Author information

Authors and Affiliations

Authors

Contributions

J.G.M., T-i.K., G.S., X.H., Y.H.J. and R.A.-H. performed the experiments. J.G.M., T-i.K., G.S., X.H., R.A.-H., F.G.O., M.R.B. and J.A.R. developed the protocol. J.G.M., T-i.K., G.S., X.H., M.R.B. and J.A.R. wrote the manuscript.

Corresponding authors

Correspondence to Michael R Bruchas or John A Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Machining of the cannula holder adapter.

This adapter is specifically designed for use with the KOPF Model 1966 Cannula Holder. The adapter is fashioned from aluminum with an 8 mm stalk (3 mm in diameter) that can be held by the Model 1966. The main body of the adapter is 14 mm in length with a 7 mm diameter. There are two orthogonal bore holes through the body. The first is a 5 mm hole from which the center slit is created through to the tip of the adapter. The second is a 2 mm screw-hole so that a screw can be tightened to reduce the size of the center slit to hold the μ-needle. It is important that the center point of the adapter be in-line with the center point of the cannula holder itself to ensure accurate device injection. Note that this adapter is merely a suggestion, but we acknowledge there can be many other solutions to the problem of accurate injection of the devices. Most stereotaxic instrument manufacturers offer custom-built holders and it is likely that many standard electrode holders can be modified to suit the needs of the individual laboratory (e.g. KOPF Model 1768).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCall, J., Kim, Ti., Shin, G. et al. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 8, 2413–2428 (2013). https://doi.org/10.1038/nprot.2013.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.158

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing