Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Tracking mechanics and volume of globular cells with atomic force microscopy using a constant-height clamp

Abstract

To understand the role of physical forces at a cellular level, it is necessary to track mechanical properties during cellular processes. Here we present a protocol that uses flat atomic force microscopy (AFM) cantilevers clamped at constant height, and light microscopy to measure the resistance force, mechanical stress and volume of globular animal cells under compression. We describe the AFM and cantilever setup, live cell culture in the AFM, how to ensure stability of AFM measurements during medium perfusion, integration of optical microscopy to measure parameters such as volume and track intracellular dynamics, and interpretation of the physical parameters measured. Although we use this protocol on trypsinized interphase and mitotic HeLa cells, it can also be applied to other cells with a relatively globular shape, especially animal cells in a low-adhesive environment. After a short setup phase, the protocol can be used to investigate approximately one cell per hour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the protocol.
Figure 2: AFM-based techniques for cellular mechanics and volume measurements.
Figure 3: Examples of spurious disturbance in force recorded by the AFM setup during exchange of medium with different refractive indices.
Figure 4: Representative force (black), cross-sectional area (green), rounding pressure (orange) and normalized volume (blue) data plots for a trypsinized cell transitioning through G2/M of the cell cycle.
Figure 5: Representative force (black), cross-sectional area (green), rounding pressure (orange) and normalized volume (blue) plots for cells.

Similar content being viewed by others

References

  1. Eggert, U.S., Mitchison, T.J. & Field, C.M. Animal cytokinesis: from parts list to mechanisms. Annu. Rev. Biochem. 75, 543–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Robinson, D.N. & Spudich, J.A. Mechanics and regulation of cytokinesis. Curr. Opin. Cell. Biol. 16, 182–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Discher, D.E., Mooney, D.J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guck, J., Lautenschlager, F., Paschke, S. & Beil, M. Critical review: cellular mechanobiology and amoeboid migration. Integr. Biol. (Camb.) 2, 575–583 (2010).

    Article  Google Scholar 

  5. Lammermann, T. & Sixt, M. Mechanical modes of 'amoeboid' cell migration. Curr. Opin. Cell. Biol. 21, 636–644 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Gardel, M.L., Schneider, I.C., Aratyn-Schaus, Y. & Waterman, C.M. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell. Dev. Biol. 26, 315–333 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bryant, D.M. & Mostov, K.E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell. Biol. 9, 887–901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mammoto, T. & Ingber, D.E. Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. von Dassow, M. & Davidson, L.A. Variation and robustness of the mechanics of gastrulation: the role of tissue mechanical properties during morphogenesis. Birth Defects Res. C. Embryo. Today 81, 253–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Paluch, E. & Heisenberg, C.P. Biology and physics of cell shape changes in development. Curr. Biol. 19, R790–R799 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Grinnell, F. & Petroll, W.M. Cell motility and mechanics in three-dimensional collagen matrices. Annu. Rev. Cell. Dev. Biol. 26, 335–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Butcher, D.T., Alliston, T. & Weaver, V.M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Provenzano, P.P. & Keely, P.J. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J. Cell. Sci. 124, 1195–1205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wyss, H.M. et al. Biophysical properties of normal and diseased renal glomeruli. Am. J. Physiol. Cell. Physiol. 300, C397–C405 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Lombardi, M.L. & Lammerding, J. Altered mechanical properties of the nucleus in disease. Meth. Cell. Biol. 98, 121–141 (2010).

    Article  Google Scholar 

  16. Discher, D. et al. Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37, 847–859 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Remmerbach, T.W. et al. Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69, 1728–1732 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Fabry, B. & Fredberg, J.J. Mechanotransduction, asthma, and airway smooth muscle. Drug Discov. Today Dis. Models 4, 131–137 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Janmey, P.A. & Miller, R.T. Mechanisms of mechanical signaling in development and disease. J. Cell. Sci. 124, 9–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Cheng, G., Tse, J., Jain, R.K. & Munn, L.L. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS One 4, e4632 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, G.Y.H. & Lim, C.T. Biomechanics approaches to studying human diseases. Trends Biotechnol. 25, 111–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, J.H. & Li, B. Mechanics rules cell biology. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2, 16 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell. Biol. 7, 265–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Janmey, P.A., Georges, P.C. & Hvidt, S. Basic rheology for biologists. Meth. Cell. Biol. 83, 3–27 (2007).

    CAS  Google Scholar 

  25. Pelling, A.E. & Horton, M.A. An historical perspective on cell mechanics. Pflugers. Arch. 456, 3–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Vlès, F. Les tensions de surface et les deformations de l'oeuf d'oursin. Arch. de Phys. Biol. 4, 263–284 (1926).

    Google Scholar 

  27. Harvey, E.N. & Loomis, A.L. A microscope-centrifuge. Science 72, 42–44 (1930).

    Article  CAS  PubMed  Google Scholar 

  28. Hiramoto, Y. Observations and measurements of sea urchin eggs with a centrifuge microscope. J. Cell. Physiol. 69, 219–230 (1967).

    Article  Google Scholar 

  29. Cole, K.S. Surface forces of the arbacia egg. J. Cell. Comp. Physiol. 1, 1–9 (1932).

    Article  Google Scholar 

  30. Hiramoto, Y. Mechanical properties of sea urchin eggs. I. Surface force and elastic modulus of the cell membrane. Exp. Cell. Res. 32, 59–75 (1963).

    Article  CAS  PubMed  Google Scholar 

  31. Yoneda, M. & Dan, K. Tension at the surface of the dividing sea-urchin egg. J. Exp. Biol. 57, 575–587 (1972).

    CAS  PubMed  Google Scholar 

  32. Wolpert, L. Mechanical properties of membrane of sea urchin egg during cleavage. Exp. Cell. Res. 41, 385–396 (1966).

    Article  CAS  PubMed  Google Scholar 

  33. Mitchison, J.M. & Swann, M.M. The mechanical properties of the cell surface. 1. The cell elastimeter. J. Exp. Biol. 31, 443 (1954).

    Google Scholar 

  34. Rappaport, R. Cell division—direct measurement of maximum tension exerted by furrow of echindoerm eggs. Science 156, 1241–1243 (1967).

    Article  CAS  PubMed  Google Scholar 

  35. Rappaport, R. Cleavage of sand dollar eggs under constant tensile stress. J. Exp. Zool. 144, 225–231 (1960).

    Article  PubMed  Google Scholar 

  36. Rand, R.P. & Burton, A.C. Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys. J. 4, 115–135 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Evans, E.A. & Lacelle, P.L. Intrinsic material properties of erythrocyte-membrane indicated by mechanical analysis of deformation. Blood 45, 29–43 (1975).

    CAS  PubMed  Google Scholar 

  38. Hochmuth, R.M. & Mohandas, N. Uniaxial loading of red-cell membrane. J. Biomech. 5, 501–509 (1972).

    Article  CAS  PubMed  Google Scholar 

  39. Weed, R.I., Lacelle, P.L. & Merrill, E.W. Metabolic dependence of red cell deformability. J. Clin. Invest. 48, 795–809 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klug, P.P., Lessin, L.S. & Radice, P. Rheological aspects of sickle-cell disease. Arch. Intern. Med. 133, 577–590 (1974).

    Article  CAS  PubMed  Google Scholar 

  41. Suresh, S. et al. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta. Biomater. 1, 15–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Skalak, R. Biomechanics at the cellular-level—the Alza distinguished lecture. Ann. Biomed. Eng. 12, 305–318 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Muller, D.J., Helenius, J., Alsteens, D. & Dufrene, Y.F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Hochmuth, R.M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Thoumine, O. & Ott, A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell. Sci. 110, 2109–2116 (1997).

    CAS  PubMed  Google Scholar 

  46. Mitrossilis, D. et al. Single-cell response to stiffness exhibits muscle-like behavior. Proc. Natl. Acad. Sci. USA 106, 18243–18248 (2009).

    Article  PubMed  Google Scholar 

  47. Fabry, B. et al. Selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J. Appl. Physiol. 91, 986–994 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, N., Butler, J.P. & Ingber, D.E. Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Kasza, K.E., Vader, D., Koster, S., Wang, N. & Weitz, D.A. Magnetic twisting cytometry. Cold Spring Harb. Protoc. published online, doi:10.1101/pdb.prot5599 (1 April 2011).

  50. Zhang, H. & Liu, K.K. Optical tweezers for single cells. JR Soc. Interface 5, 671–690 (2008).

    Article  CAS  Google Scholar 

  51. Ou-Yang, H.D. & Wei, M.T. Complex fluids: probing mechanical properties of biological systems with optical tweezers. Annu. Rev. Phys. Chem. 61, 421–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Mizuno, D., Bacabac, R., Tardin, C., Head, D. & Schmidt, C.F. High-resolution probing of cellular force transmission. Phys. Rev. Lett. 102, 168102 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Lincoln, B., Wottawah, F., Schinkinger, S., Ebert, S. & Guck, J. High-throughput rheological measurements with an optical stretcher. Meth. Cell. Biol. 83, 397–423 (2007).

    Article  CAS  Google Scholar 

  54. Knezevic, V., Sim, A.J., Borg, T.K. & Holmes, J.W. Isotonic biaxial loading of fibroblast-populated collagen gels: a versatile, low-cost system for the study of mechanobiology. Biomech. Model. Mechanobiol. 1, 59–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Sotoudeh, M., Jalali, S., Usami, S., Shyy, J.Y. & Chien, S. A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells. Ann. Biomed. Eng. 26, 181–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Young, E.W.K., Wheeler, A.R. & Simmons, C.A. Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab. Chip. 7, 1759–1766 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Malek, A.M. & Izumo, S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell. Sci. 109, 713–726 (1996).

    CAS  PubMed  Google Scholar 

  58. Gabriele, S., Benoliel, A.M., Bongrand, P. & Theodoly, O. Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin II activity in capillary leukocyte trafficking. Biophys. J. 96, 4308–4318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosenbluth, M.J., Lam, W.A. & Fletcher, D.A. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab. Chip. 8, 1062–1070 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Siechen, S., Yang, S.Y., Chiba, A. & Saif, T. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl. Acad. Sci. USA 106, 12611–12616 (2009).

    Article  PubMed  Google Scholar 

  61. Loh, O., Vaziri, A. & Espinosa, H.D.S.M. The potential of MEMS for advancing experiments and modeling in cell mechanics. Exp. Mech. 49, 105–124 (2009).

    Article  CAS  Google Scholar 

  62. Radmacher, M. Studying the mechanics of cellular processes by atomic force microscopy. Meth. Cell. Biol. 83, 347–372 (2007).

    Article  CAS  Google Scholar 

  63. Mahaffy, R.E., Shih, C.K., MacKintosh, F.C. & Kas, J. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85, 880–883 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Alcaraz, J. et al. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18, 716–721 (2002).

    Article  CAS  Google Scholar 

  65. Smith, B.A., Tolloczko, B., Martin, J.G. & Grutter, P. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys. J. 88, 2994–3007 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gavara, N. & Chadwick, R.S. Noncontact microrheology at acoustic frequencies using frequency-modulated atomic force microscopy. Nat. Methods 7, 650–654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lam, W.A. et al. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat. Mater. 10, 61–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Brangwynne, C.P., MacKintosh, F.C. & Weitz, D.A. Force fluctuations and polymerization dynamics of intracellular microtubules. Proc. Natl. Acad. Sci. USA 104, 16128–16133 (2007).

    Article  PubMed  Google Scholar 

  69. Park, K. et al. Measurement of adherent cell mass and growth. Proc. Natl. Acad. Sci. USA 107, 20691–20696 (2010).

    Article  PubMed  Google Scholar 

  70. Sen, S. & Kumar, S. Cell-matrix de-adhesion dynamics reflect contractile mechanics. Cell. Mol. Bioeng. 2, 218–230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wildt, B., Wirtz, D. & Searson, P.C. Triggering cell detachment from patterned electrode arrays by programmed subcellular release. Nat. Protoc. 5, 1273–1280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thomas, A. et al. Real-time elastography—an advanced method of ultrasound: first results in 108 patients with breast lesions. Ultrasound Obstet. Gynecol. 28, 335–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Kundu, T., Bereiter-Hahn, J. & Hillmann, K. Measuring elastic properties of cells by evaluation of scanning acoustic microscopy V(Z) values using simplex algorithm. Biophys. J. 59, 1194–1207 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mayer, M., Depken, M., Bois, J.S., Julicher, F. & Grill, S.W. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467, 617–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Ji, L., Loerke, D., Gardel, M. & Danuser, G. Probing intracellular force distributions by high-resolution live cell imaging and inverse dynamics. Meth. Cell. Biol. 83, 199–235 (2007).

    Article  CAS  Google Scholar 

  76. Dembo, M. & Wang, Y.L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, J. The use of gelatin substrates for traction force microscopy in rapidly moving cells. Meth. Cell. Biol. 83, 297–312 (2007).

    CAS  Google Scholar 

  78. Tan, J.L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Yang, M.T., Fu, J., Wang, Y.K., Desai, R.A. & Chen, C.S. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat. Protoc. 6, 187–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Maskarinec, S.A., Franck, C., Tirrell, D.A. & Ravichandran, G. Quantifying cellular traction forces in three dimensions. Proc. Natl. Acad. Sci. USA 106, 22108–22113 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Legant, W.R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7, 969–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B. & Chadwick, R.S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rosenbluth, M.J., Lam, W.A. & Fletcher, D.A. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys. J. 90, 2994–3003 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell. Biol. 10, 429–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Stewart, M.P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Webster, K.D., Crow, A. & Fletcher, D.A. An AFM-based stiffness clamp for dynamic control of rigidity. PLoS One 6, e17807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chaudhuri, O., Parekh, S.H. & Fletcher, D.A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Friedrichs, J., Helenius, J. & Muller, D.J. Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat. Protoc. 5, 1353–1361 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Helenius, J., Heisenberg, C.P., Gaub, H.E. & Muller, D.J. Single-cell force spectroscopy. J. Cell. Sci. 121, 1785–1791 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Prass, M., Jacobson, K., Mogilner, A. & Radmacher, M. Direct measurement of the lamellipodial protrusive force in a migrating cell. J. Cell. Biol. 174, 767–772 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Muller, D.J. & Dufrene, Y.F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Stewart, M.P., Toyoda, Y., Hyman, A.A. & Muller, D.J. Force probing cell shape changes to molecular resolution. Trends. Biochem. Sci. 36, 444–450 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Carreno, S. et al. Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. J. Cell. Biol. 180, 739–746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cramer, L.P. & Mitchison, T.J. Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol. Biol. Cell. 8, 109–119 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kunda, P., Pelling, A.E., Liu, T. & Baum, B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr. Biol. 18, 91–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Maddox, A.S. & Burridge, K. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J. Cell. Biol. 160, 255–265 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Radmacher, M., Fritz, M. & Hansma, P.K. Imaging soft samples with the atomic-force microscope—gelatin in water and propanol. Biophys. J. 69, 264–270 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hertz, H. Uber den Kontakt elastischer Korper. J. Reine. Angew. Mathematik. 92, 156–188 (1881).

    Google Scholar 

  99. Sneddon, I. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sc. 3, 47–57 (1965).

    Article  Google Scholar 

  100. Radmacher, M., Fritz, M., Kacher, C.M., Cleveland, J.P. & Hansma, P.K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Quist, A.P., Rhee, S.K., Lin, H. & Lal, R. Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J. Cell. Biol. 148, 1063–1074 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schneider, S.W., Matzke, R., Radmacher, M. & Oberleithner, H. Shape and volume of living aldosterone-sensitive cells imaged with the atomic force microscope. Meth. Mol. Biol. 242, 255–279 (2004).

    Google Scholar 

  103. Harris, A.R. & Charras, G.T. Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology 22, 345102 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Callies, C. et al. Membrane potential depolarization decreases the stiffness of vascular endothelial cells. J. Cell. Sci. 124, 1936–1942 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Jin, L.W., Lulevich, V., Zimmer, C.C., Hong, H.S. & Liu, G.Y. Single-cell mechanics provides a sensitive and quantitative means for probing amyloid-beta peptide and neuronal cell interactions. Proc. Natl. Acad. Sci. USA 107, 13872–13877 (2010).

    Article  PubMed  Google Scholar 

  106. Zhou, E.H. et al. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc. Natl. Acad. Sci. USA 106, 10632–10637 (2009).

    Article  PubMed  Google Scholar 

  107. Spagnoli, C., Beyder, A., Besch, S. & Sachs, F. Atomic force microscopy analysis of cell volume regulation. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 78, 031916 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Steltenkamp, S., Rommel, C., Wegener, J. & Janshoff, A. Membrane stiffness of animal cells challenged by osmotic stress. Small 2, 1016–1020 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Salbreux, G., Joanny, J.F., Prost, J. & Pullarkat, P. Shape oscillations of non-adhering fibroblast cells. Phys. Biol. 4, 268–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Vigne, P., Frelin, C., Cragoe, E.J., Jr. & Lazdunski, M. Ethylisopropyl-amiloride: a new and highly potent derivative of amiloride for the inhibition of the Na+/H+ exchange system in various cell types. Biochem. Biophys. Res. Commun. 116, 86–90 (1983).

    Article  CAS  PubMed  Google Scholar 

  111. Hutter, J.L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instr. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  112. Burnham, N.A. et al. Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14, 1–6 (2003).

    Article  CAS  Google Scholar 

  113. Kanda, T., Sullivan, K.F. & Wahl, G.M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Haraguchi, T., Kaneda, T. & Hiraoka, Y. Dynamics of chromosomes and microtubules visualized by multiple-wavelength fluorescence imaging in living mammalian cells: effects of mitotic inhibitors on cell cycle progression. Genes Cells 2, 369–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Lang, F. Mechanisms and Significance of Cell Volume Regulation (Karger, 2006).

  116. Numata, T., Shimizu, T. & Okada, Y. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am. J. Physiol-Cell. Ph. 292, C460–C467 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Helenius for stimulatory discussions and advice, and J. Howard for advice on refractive index change during medium exchange. This work was supported by the Bundesministerium für Bildung und Forschung (BMBF), the Swiss National Center of Competence in Research (NCCR) “Nanoscale Science”, the Max Planck Society and the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

M.P.S. and D.J.M. designed the AFM protocol, and Y.T. devised its application to mitotic cells. M.P.S. performed and optimized the experimental procedure. M.P.S., A.A.H., Y.T. and D.J.M. contributed to the manuscript.

Corresponding author

Correspondence to Daniel J Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, M., Toyoda, Y., Hyman, A. et al. Tracking mechanics and volume of globular cells with atomic force microscopy using a constant-height clamp. Nat Protoc 7, 143–154 (2012). https://doi.org/10.1038/nprot.2011.434

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.434

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing