Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Recording of mechanosensitive currents using piezoelectrically driven mechanostimulator

Abstract

Mechanotransduction constitutes the basis of a variety of physiological processes, such as the senses of touch, balance, proprioception and hearing. In vertebrates, mechanosensation is mediated by mechanosensory receptors. The aptitude of these mechanoreceptors for detecting mechanical information relies on the presence of mechanosensitive channels that transform mechanical forces into electrical signals. However, advances in understanding mechanical transduction processes have proven difficult because sensory nerve endings have historically been inaccessible to patch-clamp recording. We report here an in vitro model of mechanotransduction that allows the application of focal force on sensory neuron membrane during whole-cell patch clamping. This technique, called mechano-clamp, provides an opportunity to explore the properties and identities of mechanotransducer channels in mammalian sensory neurons. The protocol—from tissue dissociation to patch-clamp recording—can be completed in 7 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Setup of the mechano-clamp device.
Figure 2: Recording of mechanosensitive currents in sensory neurons using the mechano-clamp technique.
Figure 3: Examples of recordings in DRG neurons: the good and the ugly.
Figure 4: Results obtained with the mechano-clamp technique.

Similar content being viewed by others

References

  1. Delmas, P., Hao, J. & Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. 12, 139–153 (2011).

    Article  CAS  Google Scholar 

  2. Basbaum, A.I., Bautista, D.M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  Google Scholar 

  3. Belmonte, C. & Viana, F. Molecular and cellular limits to somatosensory specificity. Mol. Pain 4, 14 (2008).

    Article  Google Scholar 

  4. Lumpkin, E.A. & Caterina, M.J. Mechanisms of sensory transduction in the skin. Nature 445, 858–865 (2007).

    Article  CAS  Google Scholar 

  5. Hao, J. & Delmas, P. TRP channels in thermo- and mechanosensation. in The Encyclopedia of Behavioral Neuroscience (eds. Koob, G., Le Moal, M. & Thompson, R.) Pages 393–399 (Elsevier Ltd., 2010).

  6. Iggo, A. & Ogawa, H. Correlative physiological and morphological studies of rapidly adapting mechanoreceptors in cat's glabrous skin. J. Physiol. 266, 275–296 (1977).

    Article  CAS  Google Scholar 

  7. Pawson, L. et al. GABAergic/glutamatergic-glial/neuronal interaction contributes to rapid adaptation in pacinian corpuscles. J. Neurosci. 29, 2695–2705 (2009).

    Article  CAS  Google Scholar 

  8. McCarter, G.C., Reichling, D.B. & Levine, J.D. Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci. Lett. 273, 179–182 (1999).

    Article  CAS  Google Scholar 

  9. Coste, B., Crest, M. & Delmas, P. Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J. Gen. Physiol. 129, 57–77 (2007).

    Article  CAS  Google Scholar 

  10. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science (New York, NY) 330, 55–60 (2010).

    Article  CAS  Google Scholar 

  11. Drew, L.J. et al. Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J. Physiol. 556, 691–710 (2004).

    Article  CAS  Google Scholar 

  12. Drew, L.J. & Wood, J.N. FM1-43 is a permeant blocker of mechanosensitive ion channels in sensory neurons and inhibits behavioural responses to mechanical stimuli. Mol. Pain 3, 1 (2007).

    Article  Google Scholar 

  13. Drew, L.J., Wood, J.N. & Cesare, P. Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J. Neurosci. 22, RC228 (2002).

    Article  Google Scholar 

  14. Hao, J. & Delmas, P. Multiple desensitization mechanisms of mechanotransducer channels shape firing of mechanosensory neurons. J. Neurosci. 30, 13384–13395 (2010).

    Article  CAS  Google Scholar 

  15. Hu, J. & Lewin, G.R. Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J. Physiol. 577, 815–828 (2006).

    Article  CAS  Google Scholar 

  16. McCarter, G.C. & Levine, J.D. Ionic basis of a mechanotransduction current in adult rat dorsal root ganglion neurons. Mol. Pain 2, 28 (2006).

    Article  Google Scholar 

  17. Rugiero, F., Drew, L.J. & Wood, J.N. Kinetic properties of mechanically activated currents in spinal sensory neurons. J. Physiol. 588, 301–314 (2010).

    Article  CAS  Google Scholar 

  18. Di Castro, A., Drew, L.J., Wood, J.N. & Cesare, P. Modulation of sensory neuron mechanotransduction by PKC- and nerve growth factor-dependent pathways. Proc. Natl. Acad. Sci. USA 103, 4699–4704 (2006).

    Article  CAS  Google Scholar 

  19. Lechner, S.G. & Lewin, G.R. Peripheral sensitisation of nociceptors via G-protein-dependent potentiation of mechanotransduction currents. J. Physiol. 587, 3493–3503 (2009).

    Article  CAS  Google Scholar 

  20. Vilceanu, D. & Stucky, C.L. TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PloS One 5, e12177 (2010).

    Article  Google Scholar 

  21. Cho, H., Shin, J., Shin, C.Y., Lee, S.Y. & Oh, U. Mechanosensitive ion channels in cultured sensory neurons of neonatal rats. J. Neurosci. 22, 1238–1247 (2002).

    Article  CAS  Google Scholar 

  22. Usoskin, D. et al. En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons. Proc. Natl. Acad. Sci. USA 107, 16336–16341 (2010).

    Article  CAS  Google Scholar 

  23. Rugiero, F. & Wood, J.N. The mechanosensitive cell line ND-C does not express functional thermoTRP channels. Neuropharmacology 56, 1138–1146 (2009).

    Article  CAS  Google Scholar 

  24. Delmas, P., Wanaverbecq, N., Abogadie, F.C., Mistry, M. & Brown, D.A. Signaling microdomains define the specificity of receptor-mediated InsP(3) pathways in neurons. Neuron 34, 209–220 (2002).

    Article  CAS  Google Scholar 

  25. Bjorklund, U., Persson, M., Ronnback, L. & Hansson, E. Primary cultures from cerebral cortex and hippocampus enriched in glutamatergic and GABAergic neurons. Neurochem. Res. 35, 1733–1742 (2010).

    Article  Google Scholar 

  26. Cummins, T.R., Rush, A.M., Estacion, M., Dib-Hajj, S.D. & Waxman, S.G. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat. Protoc. 4, 1103–1112 (2009).

    Article  CAS  Google Scholar 

  27. Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).

    Article  CAS  Google Scholar 

  28. Mortensen, M. & Smart, T.G. Single-channel recording of ligand-gated ion channels. Nat. Protoc. 2, 2826–2841 (2007).

    Article  CAS  Google Scholar 

  29. Cheng, C.M. et al. Probing localized neural mechanotransduction through surface-modified elastomeric matrices and electrophysiology. Nat. Protoc. 5, 714–724 (2010).

    Article  CAS  Google Scholar 

  30. Hamill, O.P. Twenty odd years of stretch-sensitive channels. Pflugers Arch 453, 333–351 (2006).

    Article  CAS  Google Scholar 

  31. Honore, E. The neuronal background K2P channels: focus on TREK1. Nat. Rev. 8, 251–261 (2007).

    Article  CAS  Google Scholar 

  32. Sharif-Naeini, R. et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139, 587–596 (2009).

    Article  CAS  Google Scholar 

  33. Bhattacharya, M.R. et al. Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc. Natl. Acad. Sci. USA 105, 20015–20020 (2008).

    Article  CAS  Google Scholar 

  34. Maingret, F., Patel, A.J., Lesage, F., Lazdunski, M. & Honore, E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274, 26691–26696 (1999).

    Article  CAS  Google Scholar 

  35. Martinac, B. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117, 2449–2460 (2004).

    Article  CAS  Google Scholar 

  36. Sachs, F. Stretch-activated ion channels: what are they? Physiology (Bethesda, Md) 25, 50–56 (2010).

    CAS  Google Scholar 

  37. Sniadecki, N.J. A tiny touch: activation of cell signaling pathways with magnetic nanoparticles. Endocrinology 151, 451–457 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Rodat-Despoix and A. Fernandez for technical assistance. This study was supported by the CNRS and by grants from the Agence Nationale de la Recherche, Fondation Schlumberger, ARCInca-2006, UPSA, IRME and Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and P.D. conceived, designed and performed the experiments and wrote the paper.

Corresponding author

Correspondence to Patrick Delmas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, J., Delmas, P. Recording of mechanosensitive currents using piezoelectrically driven mechanostimulator. Nat Protoc 6, 979–990 (2011). https://doi.org/10.1038/nprot.2011.343

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.343

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing