Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generating heparan sulfate saccharide libraries for glycomics applications

Abstract

Natural and semi-synthetic heparan sulfate (HS) saccharide libraries are a valuable resource for investigating HS structure–function relationships, enabling high-throughput glycomics studies. Owing to the difficulty of chemical or in vitro enzymatic synthesis of HS saccharides, the structural diversity displayed in saccharides from tissue or cell sources cannot be readily accessed. In contrast, saccharide libraries can be generated by partial digestion of tissue-derived HS polysaccharide chains and chromatographic fractionation of the resulting saccharide mixtures. Fractionation is initially on the basis of hydrodynamic volume, using size exclusion chromatography. Further fractionation, on the basis of charge using strong anion exchange, can subsequently be applied. Desalting and sample concentration follows each fractionation step. Chromatographic fractions are generated that contain purified, or partially purified, saccharides. Here we describe a comprehensive protocol for generation of structurally diverse natural saccharide libraries from HS variants that is fast (3 weeks) and reproducible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: A flow chart summarizing production of semi-purified natural HS saccharide libraries.
Figure 3: Analysis of heparinase digestion time points using PAGE.
Figure 4: Analysis of heparinase digestion time points using SEC.
Figure 5: SEC fractionation of heparinase partial digests of HS variants.
Figure 6: Fraction pooling and PAGE analysis for SEC fractionation of heparinase partial digests of HS variants.
Figure 7: SAX-HPLC of SEC peak fraction pools from HS partial digests.

Similar content being viewed by others

References

  1. Bishop, J.R., Schuksz, M. & Esko, J.D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Ori, A., Wilkinson, M.C. & Fernig, D.G. The heparanome and regulation of cell function: structures, functions and challenges. Front. Biosci. 13, 4309–4338 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Rostand, K.S. & Esko, J.D. Microbial adherence to and invasion through proteoglycans. Infect. Immun. 65, 1–8 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Coombe, D.R. & Kett, W.C. Heparan sulfate-protein interactions: therapeutic potential through structure-function insights. Cell. Mol. Life. Sci. 62, 410–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Capila, I. & Linhardt, R.J. Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 41, 391–412 (2002).

    Article  PubMed  Google Scholar 

  6. Mulloy, B. The specificity of interactions between proteins and sulfated polysaccharides. An. Acad. Bras. Cienc. 77, 651–664 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kreuger, J., Spillmann, D., Li, J.P. & Lindahl, U. Interactions between heparan sulfate and proteins: the concept of specificity. J. Cell. Biol. 174, 323–327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Noti, C. & Seeberger, P.H. Chemical approaches to define the structure-activity relationship of heparin-like glycosaminoglycans. Chem. Biol. 12, 731–756 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Linhardt, R.J., Dordick, J.S., Deangelis, P.L. & Liu, J. Enzymatic synthesis of glycosaminoglycan heparin. Semin. Thromb. Hemost. 33, 453–465 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arungundram, S. et al. Modular synthesis of heparan sulfate oligosaccharides for structure-activity relationship studies. J. Am. Chem. Soc. 131, 17394–17405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Powell, A.K., Yates, E.A., Fernig, D.G. & Turnbull, J.E. Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 14, 17R–30R (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Skidmore, M.A. et al. The activities of heparan sulfate and its analogue heparin are dictated by biosynthesis, sequence, and conformation. Connect. Tissue. Res. 49, 140–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Delehedde, M., Lyon, M., Gallagher, J.T., Rudland, P.S. & Fernig, D.G. Fibroblast growth factor-2 binds to small heparin-derived oligosaccharides and stimulates a sustained phosphorylation of p42/44 mitogen-activated protein kinase and proliferation of rat mammary fibroblasts. Biochem. J. 366, 235–244 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson, C.J., Harmer, N.J., Goodger, S.J., Blundell, T.L. & Gallagher, J.T. Cooperative dimerization of fibroblast growth factor 1 (FGF1) upon a single heparin saccharide may drive the formation of 2:2:1 FGF1.FGFR2c.heparin ternary complexes. J. Biol. Chem. 280, 42274–42282 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Goodger, S.J. et al. Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J. Biol. Chem. 283, 13001–13008 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Luo, Y., Ye, S., Kan, M. & McKeehan, W.L. Structural specificity in a FGF7-affinity purified heparin octasaccharide required for formation of a complex with FGF7 and FGFR2IIIb. J. Cell. Biochem. 97, 1241–1258 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Faham, S., Hileman, R.E., Fromm, J.R., Linhardt, R.J. & Rees, D.C. Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Schlessinger, J. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell. 6, 743–750 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Pellegrini, L., Burke, D.F., von Delft, F., Mulloy, B. & Blundell, T.L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hricovini, M. et al. Conformation of heparin pentasaccharide bound to antithrombin III. Biochem. J. 359, 265–272 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hussain, S.A. et al. A molecular mechanism for the heparan sulfate dependence of slit-robo signaling. J. Biol. Chem. 281, 39693–39698 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Vives, R.R., Goodger, S. & Pye, D.A. Combined strong anion-exchange HPLC and PAGE approach for the purification of heparan sulphate oligosaccharides. Biochem. J. 354, 141–147 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gunay, N.S. & Linhardt, R.J. Capillary electrophoretic separation of heparin oligosaccharides under conditions amenable to mass spectrometric detection. J. Chromatogr. A 1014, 225–233 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Thanawiroon, C., Rice, K.G., Toida, T. & Linhardt, R.J. Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. J. Biol. Chem. 279, 2608–2615 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Saad, O.M. & Leary, J.A. Heparin sequencing using enzymatic digestion and ESI-MSn with HOST: a heparin/HS oligosaccharide sequencing tool. Anal. Chem. 77, 5902–5911 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Tissot, B. et al. Software tool for the structural determination of glycosaminoglycans by mass spectrometry. Anal. Chem. 80, 9204–9212 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Chi, L., Amster, J. & Linhardt, R.J. Mass spectrometry for the analysis of highly charged sulfated carbohydrates. Curr. Anal. Chem. 1, 223–240 (2005).

    Article  CAS  Google Scholar 

  28. Zaia, J. On-line separations combined with MS for analysis of glycosaminoglycans. Mass. Spectrom. Rev. 28, 254–272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Powell, A.K., Zhi, Z.L. & Turnbull, J.E. Saccharide microarrays for high-throughput interrogation of glycan-protein binding interactions. Methods. Mol. Biol. 534, 313–329 (2009).

    CAS  PubMed  Google Scholar 

  30. Kreuger, J., Salmivirta, M., Sturiale, L., Gimenez-Gallego, G. & Lindahl, U. Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J. Biol. Chem. 276, 30744–30752 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Jemth, P. et al. Biosynthetic oligosaccharide libraries for identification of protein-binding heparan sulfate motifs. Exploring the structural diversity by screening for fibroblast growth factor (FGF)1 and FGF2 binding. J. Biol. Chem. 277, 30567–30573 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Ashikari-Hada, S. et al. Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J. Biol. Chem. 279, 12346–12354 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Guimond, S.E. & Turnbull, J.E. Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Curr. Biol. 9, 1343–1346 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Pye, D.A., Vives, R.R., Hyde, P. & Gallagher, J.T. Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2. Glycobiology 10, 1183–1192 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Lever, R. et al. Size-fractionated heparins have differential effects on human neutrophil function in vitro. Br. J. Pharmacol. 151, 837–843 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guerrini, M. et al. Conformational transitions induced in heparin octasaccharides by binding with antithrombin III. Biochem. J. 399, 191–198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vorup-Jensen, T. et al. Binding between the integrin alphaXbeta2 (CD11c/CD18) and heparin. J. Biol. Chem. 282, 30869–30877 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Yates, E.A. et al. 1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Carbohydr. Res. 294, 15–27 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, J. et al. Enzymatic redesigning of biologically active heparan sulfate. J. Biol. Chem. 280, 42817–42825 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Warda, M. et al. Isolation and characterization of heparan sulfate from various murine tissues. Glycoconj. J. 23, 555–563 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guimond, S.E. et al. Rapid purification and high sensitivity analysis of heparan sulfate from cells and tissues: toward glycomics profiling. J. Biol. Chem. 284, 25714–25722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Linhardt, R.J., Turnbull, J.E., Wang, H.M., Loganathan, D. & Gallagher, J.T. Examination of the substrate specificity of heparin and heparan sulfate lyases. Biochemistry 29, 2611–2617 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Linhardt, R.J. et al. Mapping and quantification of the major oligosaccharide components of heparin. Biochem. J. 254, 781–787 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shively, J.E. & Conrad, H.E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry 15, 3932–3942 (1976).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Z. & Perlin, A.S. Evidence of a selective free radical degradation of heparin, mediated by cupric ion. Carbohydr. Res. 255, 183–191 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Turnbull, J.E. & Gallagher, J.T. Oligosaccharide mapping of heparan sulphate by polyacrylamide-gradient-gel electrophoresis and electrotransfer to nylon membrane. Biochem. J. 251, 597–608 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feyzi, E., Trybala, E., Bergstrom, T., Lindahl, U. & Spillmann, D. Structural requirement of heparan sulfate for interaction with herpes simplex virus type 1 virions and isolated glycoprotein C. J. Biol. Chem. 272, 24850–24857 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Goger, B. et al. Different affinities of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry 41, 1640–1646 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Mourier, P.A. & Viskov, C. Chromatographic analysis and sequencing approach of heparin oligosaccharides using cetyltrimethylammonium dynamically coated stationary phases. Anal. Biochem. 332, 299–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Beltran, O. et al. Fractionation and characterization of gum from Acacia tortuosa. Effect of enzymatic and alkaline treatments. Carbohydr. Polym. 62, 239–244 (2005).

    Article  CAS  Google Scholar 

  51. Soltes, L. et al. Solution properties of high-molar-mass hyaluronans: the biopolymer degradation by ascorbate. Carbohydr. Res. 342, 1071–1077 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Skidmore, M., Atrih, A., Yates, E. & Turnbull, J.E. Labelling heparan sulphate saccharides with chromophore, fluorescence and mass tags for HPLC and MS separations. Methods. Mol. Biol. 534, 157–169 (2009).

    CAS  PubMed  Google Scholar 

  53. Turnbull, J.E., Hopwood, J.J. & Gallagher, J.T. A strategy for rapid sequencing of heparan sulfate and heparin saccharides. Proc. Natl. Acad. Sci. USA 96, 2698–2703 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Korir, A.K. & Larive, C.K. Advances in the separation, sensitive detection, and characterization of heparin and heparan sulfate. Anal. Bioanal. Chem. 393, 155–169 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We were funded by grants 6E/16799 and B65/8/02649 from the Biotechnology & Biological Sciences Research Council (to J.E.T. and A.K.P.), the Engineering & Physical Sciences Research Council (Basic Technology Grant GR/S79268/01 and Basic Technology Translation Grant EP/G037604 to J.E.T. and A.K.P.), Wellcome Trust grant 082502 (to E.A.Y. and J.E.T.) and a Medical Research Council Senior Research Fellowship (to J.E.T.). We thank Mark Skidmore, Scott Guimond and Rebecca Miller, for their useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.K.P. was involved in all aspects (particularly establishing and applying the protocol) and wrote the manuscript. Y.A.A. applied the methodologies toward saccharide preparation from diverse HS sources and assisted in preparing the manuscript. E.A.Y. generated the chemically modified heparin polysaccharides and gave advice. J.E.T. obtained funding, initially established the SEC and SAX methodology in the laboratory, edited the manuscript and provided overall supervision.

Corresponding author

Correspondence to Jeremy E Turnbull.

Supplementary information

Supplementary Figure 1. Troubleshooting a failed heparinase digestion by increasing the amount of enzyme.

Selectively 2, 6-desulfated porcine mucosal heparin was digested with (a) 2.5 mU/mg (2.5 mU/ml) and (b) 5 mU/mg (5 mU/ml) heparinase II. Aliquots were removed at sequential time points, heated to 100 °C to terminate the digestion, and analysed by PAGE, alongside a pool of size-estimated SEC fractions (containing 4-16 mers) from bovine lung heparin (Heparin stds). PAGE gels were stained with Azure A and digital images recorded using a DVC camera operated with DVC view software version 2.2.8. (PDF 681 kb)

Supplementary Figure 2. Troubleshooting/optimization of heparinase digestion using a multi-step process.

Selectively 2-O desulfated porcine mucosal heparin was analysed, using a Superdex™ peptide 7.5/300 small scale SEC column, run using an AKTApurifier™ 10 at a flow rate of 0.5 ml / min in 0.5 M ammonium hydrogen carbonate, whilst monitoring the elution profile by absorbance at λabs =232nm, (a) before digestion, following digestion with 1 mU/mg (25 mU/ml) (b) heparinase III or (c) heparinase II for 24 hrs, (d) 5 mU/mg (125 mU/ml) heparinase II for 8 hrs and (e) 1 mU/mg (25 mU/ml) each of heparinases I, II and III in combination for 8 hrs. (f) Superdex™ 16/60 medium scale SEC analysis of 2-O desulfated heparin pooled digestion aliquots (equivalent), removed and heated to 100 °C, to terminate the digestion, at 12 and 23 hours during digestion of 250 mg with a combination of 1 mU/mg (25 mU/ml) each of heparinase I, II and III. Data was recorded using the Unicorn 5.0 software and exported into SigmaPlot 11. (PDF 145 kb)

Supplementary Figure 3. Desalting of HS partial digest SEC fraction pools.

Porcine mucosal HS (a) 2 mer (b) 4mer and (c) 6, 8 and 10mer fraction pools from Superdex™ 30 SEC were desalted using two HiPrep™ 26/10 Desalting columns in series, run at flow rate of 5 ml / min in deionised water, whilst monitoring the elution profile by absorbance at λabs =232nm (—) and conductance (—). Data was recorded using the Unicorn 5.0 software and exported into SigmaPlot 11. Fractions across the first eluting peak, containing the HS saccharide, (—) were pooled to obtain minimum contamination with salt (ammonium hydrogen carbonate; —) whose elution position was confirmed by the peak with high conductance. (PDF 98 kb)

Supplementary Table 1. Monitoring heparinase III digestion of an HS variant by absorbance at λabs =232nm.

Porcine mucosal HS (413 mg) was digested with 0.1 mU/mg (5 mU/ml) of heparinase III for 2hrs, a further 10 mU heparinase III was added at 2 hurs and then again at 24 hrs, before heating the sample to 100 °C at 26 hrs to terminate digestion. (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, A., Ahmed, Y., Yates, E. et al. Generating heparan sulfate saccharide libraries for glycomics applications. Nat Protoc 5, 821–833 (2010). https://doi.org/10.1038/nprot.2010.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.17

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing