Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis

Abstract

We report here a high-throughput method for the modification of bacterial artificial chromosomes (BACs) that uses a novel two-plasmid approach. In this protocol, a vector modified in our laboratory to hold an R6Kγ origin of replication and a marker recombination cassette is inserted into a BAC in a single recombination step. Temporal control of recombination is achieved through the use of a second plasmid, pSV1.RecA, which possesses a recombinase gene and a temperature-sensitive origin of replication. This highly efficient protocol has allowed us to successfully modify more than 2,000 BACs, from which over 1,000 BAC transgenic mice have been generated. A complete cycle from BAC choice to embryo implantation takes about 5 weeks. Marker genes introduced into the mice include EGFP and EGFP-L10a. All vectors used in this project can be obtained from us by request, and the EGFP reporter mice are available through the Mutant Mouse Regional Resource Center (NINDS/GENSAT collection). CNS anatomical expression maps of the mice are available to the public at http://www.gensat.org/.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A flowchart of the two-plasmid/one–recombination step approach to BAC modification.
Figure 2: A diagrammatic representation of the two-plasmid/one–recombination step BAC modification protocol.
Figure 3: Diagrammatic representation of an A-homology (A-box) arm.
Figure 4: Confocal micrographs of direct epifluorescence captured from tissue sections from six GENSAT EGFP BAC transgenic mice that were generated using the protocol described in this paper.
Figure 5: Ethidium bromide–stained agarose gel pattern showing digested pLD53.
Figure 6: Pulsed-field gel patterns of linearized modified BAC DNA.

Similar content being viewed by others

References

  1. Monaco, A.P. & Larin, Z. YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol. 12, 280–286 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Giraldo, P. & Montoliu, L. Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic. Res. 10, 83–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ioannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat. Genet. 6, 84–89 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Marra, M.A. et al. High throughput fingerprint analysis of large-insert clones. Genome Res. 7, 1072–1084 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kelley, J.M. et al. High throughput direct end sequencing of BAC clones. Nucleic Acids Res. 27, 1539–1546 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Osoegawa, K. & de Jong, P.J. BAC library construction. Methods Mol. Biol. 255, 1–46 (2004).

    CAS  PubMed  Google Scholar 

  8. Mozo, T. et al. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat. Genet. 22, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Hoskins, R.A. et al. A BAC-based physical map of the major autosomes of Drosophila melanogaster. Science 287, 2271–2274 (2000). Erratum in Science 288, 1751 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Osoegawa, K. et al. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 10, 116–128 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McPherson, J.D. et al. A physical map of the human genome. Nature 409, 934–941 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Shizuya, H. & Kouros-Mehr, H. The development and applications of the bacterial artificial chromosome cloning system. Keio J. Med. 50, 26–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859–865 (1997).

    CAS  PubMed  Google Scholar 

  14. Heintz, N. BAC to the future: the use of bac transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2, 861–870 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lalioti, M. & Heath, J.A. A new method for generating point mutations in bacterial artificial chromosomes by homologous recombination in Escherichia coli. Nucleic Acids Res. 29, E14 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gong, S., Yang, X.W., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res. 12, 1992–1998 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohtsuka, M., Kimura, M., Tanaka, M. & Inoko, H. Recombinant DNA technologies for construction of precisely designed transgene constructs. Curr. Pharm. Biotechnol. 10, 244–251 2009.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, A.F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Murphy, K.C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180, 2063–2071 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharan, S.K., Thomason, L.C., Kuznetsov, S.G. & Court, D.L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, E.C. et al. A highly efficient Escherichia coli–based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Metcalf, W.W. et al. Conditionally replicative and conjugative plasmids carrying lacZ alpha cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T. & Kado, C.I. Positive selection procedure for the entrapment of insertion sequence elements in gram-negative bacteria. J. Bacteriol. 164, 918–921 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Wiedenmann, J., Oswald, F. & Nienhaus, G.U. Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61, 1029–1042 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doyle, J.P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chrast, R., Scott, H.S. & Antonarakis, S.E. Linearization and purification of BAC DNA for the development of transgenic mice. Transgenic Res. 8, 147–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Gong, S. & Yang, W.X. Modification of bacterial artificial chromosomes (BACs) and preparation of intact BAC DNA for generation of transgenic mice. Curr. Protoc. Neurosci. Chapter 5: Unit 5.21 (2005).

  30. Conner, D.A. Transgenic mouse production by zygote injection. Curr. Protoc. Mol. Biol. Chapter 23: Unit 23.9 (2004).

  31. Geschwind, D. GENSAT: a genomic resource for neuroscience research. Lancet Neurol. 3, 82 (2004).

    Article  PubMed  Google Scholar 

  32. Hatten, M.E. & Heintz, N. Large-scale genomic approaches to brain development and circuitry. Annu. Rev. Neurosci. 28, 89–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Abe, K., Hazama, M., Katoh, H., Yamamura, K. & Suzuki, M. Establishment of an efficient BAC transgenesis protocol and its application to functional characterization of the mouse Brachyury locus. Exp. Anim. 53, 311–320 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge C. Wang and S. Mehta for their valuable contribution to the development of the protocol described in this report and we thank S. Mehta and M. Almahariq for critical reading of the paper. We thank Z.D. Barrera for assistance with Figure 2 and J. Walsh for her untiring help with plasmid distribution to the scientific community. This work was supported by an NIH/NINDS contract N01 NS-7-2370, the Simons Foundation; N.H. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Contributions

N.H. conceptualized and directed the project. N.H. and S.G. developed the high-throughput method of BAC modification that uses a single recombination step. S.G. designed and conducted experiments. S.G. analyzed data; L.K. improved quality, condensed and summarized the protocol and wrote the paper; L.K. performed confocal microscopy.

Corresponding authors

Correspondence to Shiaoching Gong or Nathaniel Heintz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, S., Kus, L. & Heintz, N. Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis. Nat Protoc 5, 1678–1696 (2010). https://doi.org/10.1038/nprot.2010.131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.131

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing