Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Direct detection of N−HO=C hydrogen bonds in biomolecules by NMR spectroscopy

Abstract

A nuclear magnetic resonance (NMR) experiment is described for the direct detection of N-HO=C hydrogen bonds (H-bonds) in 15N and 13C isotope-labeled biomolecules. This quantitative 'long-range' HNCO-COSY (correlation spectroscopy) experiment detects and quantifies electron-mediated scalar couplings across the H-bond (H-bond scalar couplings), which connect the magnetically active 15N and 13C nuclei on both sides of the H-bond. Detectable H-bonds comprise the canonical backbone H-bonds in proteins as well as other H-bonds in proteins and nucleic acids with N–H donors and O=C (carbonylic or carboxylic) acceptors. Unlike other NMR observables, which provide only indirect evidence of the presence of H-bonds, the H-bond scalar couplings identify all partners of the H-bond, the donor, the donor proton and the acceptor, in a single experiment. The size of the scalar couplings can be related to H-bond geometries. The time required to detect the N−HO=C H-bonds in small proteins (≤≈10 kDa) is typically on the order of 1 d at millimolar concentrations, whereas H-bond detection for larger proteins (≤≈30 kDa) may be possible within several days depending on concentration, isotope composition, magnetic field strength and molecular weight. The proteins ubiquitin (8.6 kDa), dimeric RANTES (2 × 8.5 kDa) and MAP30 (30 kDa) are used as examples to illustrate this procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Backbone H-bond network of ubiquitin detected by h3JNC′ correlations4.
Figure 2: 2D long-range H(N)CO TROSY pulse sequence.
Figure 3: Results of the long-range HNCO.

Similar content being viewed by others

References

  1. Jeffrey, G.A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer, New York, 1991).

    Book  Google Scholar 

  2. Dingley, A.J. & Grzesiek, S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J. Am. Chem. Soc. 120, 8293–8297 (1998).

    Article  CAS  Google Scholar 

  3. Pervushin, K. et al. NMR scalar couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy. Proc. Natl. Acad. Sci. USA 95, 14147–14151 (1998).

    Article  CAS  Google Scholar 

  4. Cordier, F. & Grzesiek, S. Direct observation of hydrogen bonds in proteins by interresidue 3hJNC' scalar couplings. J. Am. Chem. Soc. 121, 1601–1602 (1999).

    Article  CAS  Google Scholar 

  5. Cornilescu, G., Hu, J.-S. & Bax, A. Identification of the hydrogen bonding network in a protein by scalar couplings. J. Am. Chem. Soc. 121, 2949–2950 (1999).

    Article  CAS  Google Scholar 

  6. Shenderovich, I.G. et al. Nuclear magnetic resonance of hydrogen bonded clusters between F and (HF)n: experiment and theory. Ber. Bunsenges. Phys. Chem. 102, 422–428 (1998).

    Article  CAS  Google Scholar 

  7. Golubev, N.S., Shenderovich, I.G., Smirnov, S.N., Denisov, G.S. & Limbach, H.-H. Nuclear scalar spin-spin coupling reveals novel properties of low-barrier hydrogen bonds in a polar environment. Chem. Eur. J. 5, 492–497 (1999).

    Article  CAS  Google Scholar 

  8. Blake, P.R. et al. Quantitative measurement of small through-hydrogen-bond and 'through-space' 1H-113Cd and 1H-199Hg J couplings in metal-substituted rubredoxin from Pyrococcus furiosus. J. Biomol. NMR 2, 527–533 (1992).

    Article  CAS  Google Scholar 

  9. Crabtree, R.H., Siegbahn, P.E.M., Eisenstein, O., Rheingold, A.L. & Koetzle, T.F. A new intermolecular interaction: unconventional hydrogen bonds with element-hydride bonds as proton acceptor. Acc. Chem. Res. 29, 348–354 (1996).

    Article  CAS  Google Scholar 

  10. Barfield, M. Structural dependencies of interresidue scalar coupling (h3)J(NC), and donor H-1 chemical shifts in the hydrogen bonding regions of proteins. J. Am. Chem. Soc. 124, 4158–4168 (2002).

    Article  CAS  Google Scholar 

  11. Cornilescu, G. et al. Correlation between 3hJNC' and hydrogen bond length in proteins. J. Am. Chem. Soc. 121, 6275–6279 (1999).

    Article  CAS  Google Scholar 

  12. Grzesiek, S., Cordier, F., Jaravine, V.A. & Barfield, M. Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings. Prog. Nucl. Magn. Reson. Spectrosc. 45, 275–300 (2004).

    Article  CAS  Google Scholar 

  13. Dingley, A.J., Cordier, F. & Grzesiek, S. An introduction to hydrogen bond scalar couplings. Concepts Magn. Resonance 13, 103–127 (2001).

    Article  CAS  Google Scholar 

  14. Grzesiek, S., Cordier, F. & Dingley, A.J. Scalar couplings across hydrogen bonds. Methods Enzymol. 338, 111–133 (2001).

    Article  CAS  Google Scholar 

  15. Grzesiek, S., Cordier, F. & Dingley, A.J. Hydrogen bond scalar couplings—a new tool in biomolecular NMR. in Biological Magnetic Resonance, Vol. 20 (eds. Krishna, N.R. & Berliner, L.J.) 255–283 (Kluwer Academic/Plenum, 2003).

    Google Scholar 

  16. Dingley, A.J., Nisius, L., Cordier, F. & Grzesiek, S. Direct detection of N-HN hydrogen bonds in biomolecules by NMR spectroscopy. Nat. Protoc. 3, 242–248.

  17. Dingley, A.J., Masse, J.E., Feigon, J. & Grzesiek, S. Characterization of the hydrogen bond network in guanosine quartets by internucleotide h3JNC ′ and h2JNN scalar couplings. J. Biomol. NMR 16, 279–289 (2000).

    Article  CAS  Google Scholar 

  18. Liu, A., Hu, W., Majumdar, A., Rosen, M.K. & Patel, D.J. Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy. J. Biomol. NMR 17, 79–82 (2000).

    Article  CAS  Google Scholar 

  19. Liu, A., Hu, W., Majumdar, A., Rosen, M.K. & Patel, D.J. NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins. J. Biomol. NMR 17, 305–310 (2000).

    Article  CAS  Google Scholar 

  20. Cordier, F., Wang, C., Grzesiek, S. & Nicholson, L.K. Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR. J. Mol. Biol. 304, 497–505 (2000).

    Article  CAS  Google Scholar 

  21. Jaravine, V.A., Alexandrescu, A.T. & Grzesiek, S. Observation of the closing of individual hydrogen bonds during TFE-induced helix formation in a peptide. Protein Sci. 10, 943–950 (2001).

    Article  CAS  Google Scholar 

  22. Li, H., Yamada, H., Akasaka, K. & Gronenborn, A.M. Pressure alters electronic orbital overlap in hydrogen bonds. J. Biomol. NMR 18, 207–216 (2000).

    Article  CAS  Google Scholar 

  23. Cordier, F. & Grzesiek, S. Temperature-dependence properties of protein hydrogen bonds as studied by high-resolution NMR. J. Mol. Biol. 317, 739–752 (2002).

    Article  CAS  Google Scholar 

  24. Bougault, C.M., Eidsness, M.K. & Prestegard, J.H. Hydrogen bonds in rubredoxins from mesophilic and hyperthermophilic organisms. Biochemistry 42, 4357–4372 (2003).

    Article  CAS  Google Scholar 

  25. Assadi-Porter, F.M., Abildgaard, F., Blad, H. & Markley, J.L. Correlation of the sweetness of variants of the protein brazzein with patterns of hydrogen bonds detected by NMR spectroscopy. J. Biol. Chem. 278, 31331–31339 (2003).

    Article  CAS  Google Scholar 

  26. Wang, Y.-X. et al. Measurement of h3JNC ′ connectivities across hydrogen bonds in a 30 kDa protein. J. Biomol. NMR 14, 181–184 (1999).

    Article  CAS  Google Scholar 

  27. Delaglio, F. et al. nmrPipe—a multidimensional spectral processing system based on unix pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  28. Marley, J., Lu, M. & Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75 (2001).

    Article  CAS  Google Scholar 

  29. Reilly, D. & Fairbrother, W.J. A novel isotope labeling protocol for bacterially expressed proteins. J. Biomol. NMR 4, 459–462 (1994).

    Article  CAS  Google Scholar 

  30. Cai, M. et al. An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J. Biomol. NMR 11, 97–102 (1998).

    Article  CAS  Google Scholar 

  31. Goto, N.K. & Kay, L.E. New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585–592 (2000).

    Article  CAS  Google Scholar 

  32. Grzesiek, S., Anglister, J., Ren, H. & Bax, A. C-13 line narrowing by H-2 decoupling in 2H/13C/15N-enriched proteins—application to triple-resonance 4d J-connectivity of sequential amides. J. Am. Chem. Soc. 115, 4369–4370 (1993).

    Article  CAS  Google Scholar 

  33. Venters, R.A. et al. High-level 2H/13C/15N labeling of proteins for NMR studies. J. Biomol. NMR 5, 339–344 (1995).

    Article  CAS  Google Scholar 

  34. Messerle, B.A., Wider, G., Otting, G., Weber, C. & Wuthrich, K. Solvent suppression using a spin lock in 2d and 3d NMR-spectroscopy with H2O solutions. J. Mag. Reson. 85, 608–613 (1989).

    CAS  Google Scholar 

  35. Sklenar, V. & Bax, A. Spin-echo water suppression for the generation of pure-phase two-dimensional NMR-spectra. J. Mag. Reson. 74, 469–479 (1987).

    CAS  Google Scholar 

  36. Sass, H.J., Schmid, F.F. & Grzesiek, S. Correlation of protein structure and dynamics to scalar couplings across hydrogen bonds. J. Am. Chem. Soc. 129, 5898–5903 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge our collaborators Professor Barfield, Professor Feigon and Dr. Bax for their continued support and enthusiasm. This work was supported by SNF grant 31-109712 (S.G.) and by a stipend of the Boehringer Ingelheim Fonds (L.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Grzesiek.

Supplementary information

Supplementary Box 1

Bruker 2D long-range-H(N)CO-TROSY pulse sequence code (DOC 87 kb)

Supplementary Box 2

Conversion and NMRPipe processing script for 2D long-range H(N)CO data recorded on a Bruker NMR spectrometer (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordier, F., Nisius, L., Dingley, A. et al. Direct detection of N−HO=C hydrogen bonds in biomolecules by NMR spectroscopy. Nat Protoc 3, 235–241 (2008). https://doi.org/10.1038/nprot.2007.498

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.498

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing