Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterizing biomolecules such as proteins and nucleic acids at atomic resolution. Increased magnetic field strengths drive progress in biomolecular NMR applications, leading to improved performance, e.g., higher resolution. A new class of NMR spectrometers with a 28.2 T magnetic field (1.2 GHz 1H frequency) has been commercially available since the end of 2019. The availability of ultra-high-field NMR instrumentation makes it possible to investigate more complex systems using NMR. This is especially true for highly flexible intrinsically disordered proteins (IDPs) and highly flexible regions (IDRs) of complex multidomain proteins. Indeed, the investigation of these proteins is frequently hampered by the crowding of NMR spectra. The advantages, however, are accompanied by challenges that the user must overcome when conducting experiments at such a high field (e.g., large spectral widths, radio frequency bandwidth, performance of decoupling schemes). This protocol presents strategies and tricks for optimising high-field NMR experiments for IDPs/IDRs based on the analysis of the relaxation properties of the investigated protein. The protocol, tested on three IDPs of different molecular weight and structural complexity, focuses on 13C-detected NMR at 1.2 GHz. A set of experiments, including some multiple receiver experiments, and tips to implement versions tailored for IDPs/IDRs are described. However, the general approach and most considerations can also be applied to experiments that acquire 1H or 15N nuclei and to experiments performed at lower field strengths.

Key points

  • 28.2 T nuclear magnetic resonance spectrometers are now available and, thanks to their improved resolution, are especially useful for analyzing proteins that have flexible regions.

  • At such high magnetic fields, there are important challenges relating to the concomitant increase in spectral width. Key points explored in this protocol include the relaxation properties of proteins, choice of pulses for excitation and decoupling and setup of two-dimensional and multiple receiver experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the main topics discussed in this protocol.
Fig. 2: 2D CON spectra acquired at different magnetic fields (B0).
Fig. 3: 2D CACO spectra acquired at different magnetic fields (B0).
Fig. 4: A schematic representation of 2D 13C-detected experiments.
Fig. 5: A schematic representation of multiple receivers experiments.
Fig. 6: 1D 13C-detected NMR experiments acquired on α-synuclein.
Fig. 7: Three different kind of NMR tubes and respective spinners.
Fig. 8: Complementarity of different CON-based variants, acquired on CBP-ID4 at 283 K.
Fig. 9: CON and Hα flip CON comparison acquired on CBP-ID4 at 283 K.
Fig. 10: The mr_CON//HN Multiple Receivers experiment.
Fig. 11: An exclusively heteronuclear detected multiple receiver experiment: the mr_CON//Hα CAN.
Fig. 12: Complementarity of different CON-based variants, acquired on the BRCA1 construct at 308 K.
Fig. 13: Hα CACO experiment acquired on the BRCA1 construct at 308 K.

Similar content being viewed by others

Data availability

The data are available upon request to the authors.

Code availability

Pulse sequences are deposited at https://doi.org/10.6084/m9.figshare.23864817.

References

  1. Banci, L. et al. Biomolecular NMR at 1.2 GHz. Preprint at https://doi.org/10.48550/arXiv.1910.07462 (2019).

  2. Wikus, P., Frantz, W., Kümmerle, R. & Vonlanthen, P. Commercial gigahertz-class NMR magnets. Supercond. Sci. Technol. 35, 033001 (2022).

    Article  ADS  Google Scholar 

  3. Luchinat, E., Barbieri, L., Cremonini, M. & Banci, L. Protein in-cell NMR spectroscopy at 1.2 GHz. J. Biomol. NMR 75, 97–107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nimerovsky, E. et al. Proton detected solid-state NMR of membrane proteins at 28 Tesla (1.2 GHz) and 100 KHz magic-angle spinning. Biomolecules 11, 752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Callon, M. et al. Biomolecular solid-state NMR spectroscopy at 1200 MHz: the gain in resolution. J. Biomol. NMR 75, 255–272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwalbe, H. et al. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry 36, 8977–8991 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Mittag, T. & Forman-Kay, J. D. Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol. 17, 3–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Nováček, J., Žídek, L. & Sklenář, V. Toward optimal-resolution NMR of intrinsically disordered proteins. J. Magn. Reson. 241, 41–52 (2014).

    Article  PubMed  ADS  Google Scholar 

  9. Bermel, W. et al. Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins. J. Biomol. NMR 55, 231–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Felli, I. C. & Pierattelli, R. Novel methods based on 13C detection to study intrinsically disordered proteins. J. Magn. Reson. 241, 115–125 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Bermel, W., Bertini, I., Felli, I., Piccioli, M. & Pierattelli, R. 13C-detected protonless NMR spectroscopy of proteins in solution. Prog. Nucl. Magn. Reson. Spectrosc. 48, 25–45 (2006).

    Article  CAS  Google Scholar 

  12. Felli, I. C. & Pierattelli, R. 13C direct detected NMR for challenging systems. Chem. Rev. 122, 9468–9496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bermel, W. et al. Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew. Chem. Int. Ed. 44, 3089–3092 (2005).

    Article  CAS  Google Scholar 

  14. Peng, J. W. & Wagner, G. Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 98, 308–332 (1992).

    CAS  ADS  Google Scholar 

  15. Fushman, D., Tjandra, N. & Cowburn, D. An approach to direct determination of protein dynamics from 15N NMR relaxation at multiple fields, independent of variable 15N chemical shift anisotropy and chemical exchange contributions. J. Am. Chem. Soc. 121, 8577–8582 (1999).

    Article  CAS  Google Scholar 

  16. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570 (1982).

    Article  CAS  Google Scholar 

  17. Bermel, W., Bertini, I., Felli, I. C., Kümmerle, R. & Pierattelli, R. Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J. Magn. Reson. 178, 56–64 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Bermel, W., Bertini, I., Felli, I. C. & Pierattelli, R. Speeding up 13C direct detection biomolecular NMR spectroscopy. J. Am. Chem. Soc. 131, 15339–15345 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Gil, S. et al. NMR spectroscopic studies of intrinsically disordered proteins at near-physiological conditions. Angew. Chem. Int. Ed. 52, 11808–11812 (2013).

    Article  CAS  Google Scholar 

  20. Murrali, M. G., Piai, A., Bermel, W., Felli, I. C. & Pierattelli, R. Proline fingerprint in intrinsically disordered proteins. Chembiochem 19, 1625–1629 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Felli, I. C., Bermel, W. & Pierattelli, R. Exclusively heteronuclear NMR experiments for the investigation of intrinsically disordered proteins: focusing on proline residues. Magn. Reson. 2, 511–522 (2021).

    Article  CAS  Google Scholar 

  22. Bermel, W. et al. H-Start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J. Magn. Reson. 198, 275–281 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Bermel, W. et al. Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J. Am. Chem. Soc. 128, 3918–3919 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Felli, I. C. & Pierattelli, R. Spin-state-selective methods in solution- and solid-state biomolecular 13C NMR. Prog. Nucl. Magn. Reson. Spectrosc. 84–85, 1–13 (2015).

    Article  PubMed  Google Scholar 

  25. Sørensen, M. D., Meissner, A. & Sørensen, O. W. Spin-state-selective coherence transfer via intermediate states of two-spin coherence in IS spin systems: application to E.COSY-type measurement of J coupling constants. J. Biomol. NMR 10, 181–186 (1997).

    Article  Google Scholar 

  26. Shimba, N., Stern, A. S., Craik, C. S., Hoch, J. C. & Dötsch, V. Elimination of 13Cα splitting in protein NMR spectra by deconvolution with maximum entropy reconstruction. J. Am. Chem. Soc. 125, 2382–2383 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ying, J., Li, F., Lee, J. H. & Bax, A. 13Cα decoupling during direct observation of carbonyl resonances in solution NMR of isotopically enriched proteins. J. Biomol. NMR 60, 15–21 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karunanithy, G., Mackenzie, H. W. & Hansen, D. F. Virtual homonuclear decoupling in direct detection nuclear magnetic resonance experiments using deep neural networks. J. Am. Chem. Soc. 143, 16935–16942 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Kupče, E. R. & Freeman, R. Parallel receivers and sparse sampling in multidimensional NMR. J. Magn. Reson. 213, 1–13 (2011).

    Article  PubMed  ADS  Google Scholar 

  30. Kupče, E. & Kay, L. E. Parallel acquisition of multi-dimensional spectra in protein NMR. J. Biomol. NMR 54, 1–7 (2012).

    Article  PubMed  Google Scholar 

  31. Kupce, E. NMR with multiple receivers. Mod. NMR Methodol. 4, 721–731 (2015).

    CAS  Google Scholar 

  32. Viegas, A., Viennet, T., Yu, T. & Schumann, F. UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection. J. Biomol. NMR 64, 9–15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schiavina, M. et al. Taking simultaneous snapshots of intrinsically disordered proteins in action. Biophys. J. 117, 46–55 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Mori, S., Abeygunawardana, C., Johnson, M. O. & Vanzijl, P. C. M. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson. Ser. B 108, 94–98 (1995).

    Article  CAS  Google Scholar 

  35. Takeuchi, K., Heffron, G., Sun, Z. Y. J., Frueh, D. P. & Wagner, G. Nitrogen-Detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments. J. Biomol. NMR 47, 271–282 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pontoriero, L. et al. NMR reveals specific tracts within the intrinsically disordered regions of the SARS-CoV-2 nucleocapsid protein involved in RNA encountering. Biomolecules 12, 929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schiavina, M., Pontoriero, L., Tagliaferro, G., Pierattelli, R. & Felli, I. C. The role of disordered regions in orchestrating the properties of multidomain proteins: the SARS-CoV-2 nucleocapsid protein and its interaction with enoxaparin. Biomolecules 12, 1302 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Emsley, L. & Bodenhausen, G. Gaussian pulse cascades: new analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chem. Phys. Lett. 165, 469–476 (1990).

    Article  CAS  ADS  Google Scholar 

  39. Emsley, L. & Bodenhausen, G. Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J. Magn. Reson. 97, 135–148 (1992).

    CAS  ADS  Google Scholar 

  40. Slad, S., Bermel, W., Kümmerle, R., Mathieu, D. & Luy, B. Band-selective universal 90° and 180° rotation pulses covering the aliphatic carbon chemical shift range for triple resonance experiments on 1.2 GHz spectrometers. J. Biomol. NMR 76, 185–195 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Geen, H. & Freeman, R. Band-selective radiofrequency pulses. J. Magn. Reson. 93, 93–141 (1991).

    ADS  Google Scholar 

  43. Klika, K. D. The application of simple and easy to implement decoupling pulse scheme combinations to effect decoupling of large J values with reduced artifacts. Int. J. Spectrosc. 2014, 1–9 (2014).

    Article  Google Scholar 

  44. Garwood, M. & DelaBarre, L. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J. Magn. Reson. 153, 155–177 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Kelly, A. E., Ou, H. D., Withers, R. & Dötsch, V. Low-conductivity buffers for high-sensitivity NMR measurements. J. Am. Chem. Soc. 124, 12013–12019 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Voehler, M. W., Collier, G., Young, J. K., Stone, M. P. & Germann, M. W. Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J. Magn. Reson. 183, 102–109 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. de Swiet, T. M. Optimal electric fields for different sample shapes in high resolution NMR spectroscopy. J. Magn. Reson. 174, 331–334 (2005).

    Article  PubMed  ADS  Google Scholar 

  48. Takeda, M. et al. Construction and performance of an nmr tube with a sample cavity formed within magnetic susceptibility-matched glass. J. Magn. Reson. 209, 167–173 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Bohlen, J.-M., Rey, M. & Bodenhausen, G. Refocusing with chirped pulses for broadband excitation without phase dispersion. J. Magn. Reson. 84, 191–197 (1989).

    ADS  Google Scholar 

  50. Kupce, E. & Freeman, R. Polychromatic selective pulses. J. Magn. Reson. Ser. A 102, 122–126 (1993).

    Article  CAS  ADS  Google Scholar 

  51. Kupce, E., Boyd, J. & Campbell, I. D. Short selective pulses for biochemical applications. J. Magn. Reson. Ser. B 106, 300–303 (1995).

    Article  CAS  Google Scholar 

  52. Smith, M. A., Hu, H. & Shaka, A. J. Improved broadband inversion performance for NMR in liquids. J. Magn. Reson. 151, 269–283 (2001).

    Article  CAS  ADS  Google Scholar 

  53. Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry 3rd ed. (Elsevier, 2016).

  54. Shaka, A. J., Keeler, J. & Freeman, R. Evaluation of a new broadband decoupling sequence: WALTZ-16. J. Magn. Reson. 53, 313–340 (1983).

    CAS  ADS  Google Scholar 

  55. Shaka, A. J., Barker, P. B. & Freeman, R. Computer-optimized decoupling scheme for wideband applications and low-level operation. J. Magn. Reson. 64, 547–552 (1985).

    CAS  ADS  Google Scholar 

  56. Kadkhodaie, M., Rivas, O., Tan, M., Mohebbi, A. & Shaka, A. Broadband homonuclear cross polarization using flip-flop spectroscopy. J. Magn. Reson. 91, 437–443 (1991).

    CAS  ADS  Google Scholar 

  57. Markley, J. L. et al. Recommendations for the presentation of NMR structures of proteins and nucleic acids. Pure Appl. Chem. 70, 117–142 (1998).

    Article  CAS  Google Scholar 

  58. Hsu, S.-T. D., Bertoncini, C. W. & Dobson, C. M. Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange-broadening. J. Am. Chem. Soc. 131, 7222–7223 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Nováček, J. et al. 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J. Biomol. NMR 50, 1–11 (2011).

    Article  PubMed  Google Scholar 

  60. Pantoja-Uceda, D. & Santoro, J. Direct correlation of consecutive C′–N groups in proteins: a method for the assignment of intrinsically disordered proteins. J. Biomol. NMR 57, 57–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Lopez, J., Schneider, R., Cantrelle, F., Huvent, I. & Lippens, G. Studying intrinsically disordered proteins under true in vivo conditions by combined cross-polarization and carbonyl-detection NMR spectroscopy. Angew. Chem. Int. Ed. 128, 7544–7548 (2016).

    Article  ADS  Google Scholar 

  62. Cook, E. C., Usher, G. A. & Showalter, S. A. The use of 13C direct-detect NMR to characterize flexible and disordered proteins. Methods Enzymol. 611, 81–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Alik, A. et al. Sensitivity‐enhanced 13C NMR spectroscopy for monitoring multisite phosphorylation at physiological temperature and pH. Angew. Chem. Int. Ed. 59, 10411–10415 (2020).

    Article  CAS  Google Scholar 

  64. Ozenne, V. et al. Flexible-Meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28, 1463–1470 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Brutscher, B. et al. in Intrinsically Disordered Proteins Studied by NMR Spectroscopy (eds. Felli, C. I. & Pierattelli, R.) 49–122 (Springer, 2015).

  66. Pontoriero, L., Schiavina, M., Murrali, M. G., Pierattelli, R. & Felli, I. C. Monitoring the interaction of Α‐synuclein with calcium ions through exclusively heteronuclear nuclear magnetic resonance experiments. Angew. Chem. Int. Ed. 59, 18537–18545 (2020).

    Article  CAS  Google Scholar 

  67. Schanda, P., Forge, V. & Brutscher, B. HET-SOFAST NMR for fast detection of structural compactness and heterogeneity along polypeptide chains. Magn. Reson. Chem. 44, 177–184 (2006).

    Article  Google Scholar 

  68. Schanda, P., Van Melckebeke, H. & Brutscher, B. Speeding up three-dimensional protein NMR experiments to a few minutes. J. Am. Chem. Soc. 128, 9042–9043 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Hošek, T., Gil-Caballero, S., Pierattelli, R., Brutscher, B. & Felli, I. C. Longitudinal relaxation properties Of1HN and 1Hα determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs). J. Magn. Reson. 254, 19–26 (2015).

    Article  PubMed  ADS  Google Scholar 

  70. Bermel, W. et al. Speeding up sequence specific assignment of IDPs. J. Biomol. NMR 53, 293–301 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Lescop, E., Schanda, P. & Brutscher, B. A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J. Magn. Reson. 187, 163–169 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  72. Chen, J.-H. & Mao, X.-A. Radiation damping transfer in nuclear magnetic resonance experiments via chemical exchange. J. Chem. Phys. 107, 7120–7126 (1997).

    Article  CAS  ADS  Google Scholar 

  73. Krishnan, V. V. & Murali, N. Radiation damping in modern NMR experiments: progress and challenges. Prog. Nucl. Magn. Reson. Spectrosc. 68, 41–57 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is part of a project funded by the European Union-NextGenerationEU through the ItaliaDomani PNRR project ‘Potentiating the Italian Capacity for Structural Biology Services in Instruct-ERIC’ (ITACA.SB, no. IR0000009). The support of the CERM/CIRMMP center of Instruct-ERIC and of the Italian Ministry for University and Research (MUR, FOE funding) is gratefully acknowledged. MUR and Bruker Switzerland AG are acknowledged for financial support to M.A.R. (DM 352/2022) and MUR for financial support to L.B. (Dipartimenti di Eccellenza 2018-2022). Further support has been provided by the ItaliaDomani PNRR projects ‘Tuscany Health Ecosystem’ (THE, no. ECS00000017) and ‘A multiscale integrated approach to the study of the nervous system in health and disease’ (MNESYS, no. PE0000006).

Author information

Authors and Affiliations

Authors

Contributions

M.S., I.C.F. and R.P. conceived and designed the protocol. All authors contributed to the NMR experiments. M.S., L.B. and M.A.R. analyzed the data. All authors wrote, read and commented on the paper.

Corresponding authors

Correspondence to Marco Schiavina, Isabella C. Felli or Roberta Pierattelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Davy Sinnaeve and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Pontoriero, L. et al. Angew. Chem. Int. Ed. 59, 18537–18545 (2020): https://doi.org/10.1002/anie.202008079

Schiavina, M. et al. Biophys J. 117, 46–55 (2019): https://doi.org/10.1016/j.bpj.2019.05.017

Murrali, M. G. et al. Chembiochem. 19, 1625–1629 (2019) https://doi.org/10.1002/cbic.201800172

Banci, L. et al. GHz. Preprint at arXiv (2019): https://doi.org/10.48550/arXiv.1910.07462

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiavina, M., Bracaglia, L., Rodella, M.A. et al. Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz. Nat Protoc 19, 406–440 (2024). https://doi.org/10.1038/s41596-023-00921-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00921-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing