Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants

Abstract

Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The plant PM and the cell plate are highly electronegative.
Figure 2: PI(4)K activity is required to maintain the PM electrostatic signature.
Figure 3: PtdIns(4)P is a hallmark of the plant PM.
Figure 4: PM PtdIns(4)P drives the electrostatic field of the cell membrane.
Figure 5: PINOID and BKI1/MAKRs are effectors of the PM electrostatic field.
Figure 6: PM targeting by PID cationic membrane hook is required for function.

Similar content being viewed by others

References

  1. Jean, S. & Kiger, A. A. Coordination between RAB GTPase and phosphoinositide regulation and functions. Nature Rev. Mol. Cell. Biol. 13, 463–470 (2012).

    Article  CAS  Google Scholar 

  2. Holthuis, J. C. & Levine, T. P. Lipid traffic: floppy drives and a superhighway. Nature Rev. Mol. Cell. Biol. 6, 209–220 (2005).

    Article  CAS  Google Scholar 

  3. Platre, M. P. & Jaillais, Y. Guidelines for the use of protein domains in acidic phospholipid imaging. Methods Mol. Biol. 1376, 175–194 (2016).

    Article  CAS  Google Scholar 

  4. Balla, T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019–1137 (2013).

    Article  CAS  Google Scholar 

  5. Kutateladze, T. G. Translation of the phosphoinositide code by PI effectors. Nature Chem. Biol. 6, 507–513 (2010).

    Article  CAS  Google Scholar 

  6. Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nature Rev. Mol. Cell. Biol. 9, 99–111 (2008).

    Article  CAS  Google Scholar 

  7. Bigay, J. & Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23, 886–895 (2012).

    Article  CAS  Google Scholar 

  8. Cacas, J. L. et al. Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiol. 170, 367–384 (2016).

    Article  CAS  Google Scholar 

  9. Grosjean, K., Mongrand, S., Beney, L., Simon-Plas, F. & Gerbeau-Pissot, P. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols. J. Biol. Chem. 290, 5810–5825 (2015).

    Article  CAS  Google Scholar 

  10. Botte, C. Y. & Marechal, E. Plastids with or without galactoglycerolipids. Trends Plant Sci. 19, 71–78 (2014).

    Article  CAS  Google Scholar 

  11. Boutte, Y. & Moreau, P. Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. Curr. Opin. Plant Biol. 22, 22–29 (2014).

    Article  CAS  Google Scholar 

  12. Surpin, M. & Raikhel, N. Traffic jams affect plant development and signal transduction. Nature Rev. Mol. Cell Biol. 5, 100–109 (2004).

    Article  CAS  Google Scholar 

  13. Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y. D. & Schumacher, K. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18, 715–730 (2006).

    Article  CAS  Google Scholar 

  14. Grison, M. S. et al. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27, 1228–1250 (2015).

    Article  CAS  Google Scholar 

  15. Bayer, E. M., Mongrand, S. & Tilsner, J. Specialized membrane domains of plasmodesmata, plant intercellular nanopores. Front. Plant Sci. 5, 507 (2014).

    Article  Google Scholar 

  16. Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006).

    Article  CAS  Google Scholar 

  17. Heo, W. D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461 (2006).

    Article  CAS  Google Scholar 

  18. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    Article  CAS  Google Scholar 

  19. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).

    Article  CAS  Google Scholar 

  20. Moravcevic, K. et al. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell 143, 966–977 (2010).

    Article  CAS  Google Scholar 

  21. Hammond, G. R. et al. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337, 727–730 (2012).

    Article  CAS  Google Scholar 

  22. Simon, M. L. et al. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J. 77, 322–337 (2014).

    Article  CAS  Google Scholar 

  23. Vermeer, J. E. et al. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J. 57, 356–372 (2009).

    Article  CAS  Google Scholar 

  24. van Leeuwen, W., Vermeer, J. E., Gadella, T. W. Jr. & Munnik, T. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J. 52, 1014–1026 (2007).

    Article  CAS  Google Scholar 

  25. Tejos, R. et al. Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26, 2114–2128 (2014).

    Article  CAS  Google Scholar 

  26. Ischebeck, T. et al. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25, 4894–4911 (2013).

    Article  CAS  Google Scholar 

  27. Caillaud, M. C. et al. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J. 69, 252–265 (2012).

    Article  CAS  Google Scholar 

  28. Balla, A., Tuymetova, G., Tsiomenko, A., Varnai, P. & Balla, T. A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol. Biol. Cell 16, 1282–1295 (2005).

    Article  CAS  Google Scholar 

  29. Delage, E., Ruelland, E., Guillas, I., Zachowski, A. & Puyaubert, J. Arabidopsis type-III phosphatidylinositol 4-kinases beta1 and beta2 are upstream of the phospholipase C pathway triggered by cold exposure. Plant Cell Physiol. 53, 565–576 (2012).

    Article  CAS  Google Scholar 

  30. Jaillais, Y., Fobis-Loisy, I., Miege, C., Rollin, C. & Gaude, T. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443, 106–109 (2006).

    Article  CAS  Google Scholar 

  31. Fujimoto, M., Suda, Y., Vernhettes, S., Nakano, A. & Ueda, T. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana. Plant Cell Physiol. 56, 287–298 (2015).

    Article  CAS  Google Scholar 

  32. Thole, J. M., Vermeer, J. E., Zhang, Y., Gadella, T. W., Jr. & Nielsen, E. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 20, 381–395 (2008).

    Article  CAS  Google Scholar 

  33. Munnik, T. & Nielsen, E. Green light for polyphosphoinositide signals in plants. Curr. Opin. Plant Biol. 14, 489–497 (2011).

    Article  CAS  Google Scholar 

  34. Hammond, G. R., Machner, M. P. & Balla, T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 205, 113–126 (2014).

    Article  CAS  Google Scholar 

  35. He, J. et al. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain. J. Biol. Chem. 286, 18650–18657 (2011).

    Article  CAS  Google Scholar 

  36. Xu, J. & Scheres, B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17, 525–536 (2005).

    Article  CAS  Google Scholar 

  37. Martiniere, A. et al. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl Acad. Sci. USA 109, 12805–12810 (2012).

    Article  CAS  Google Scholar 

  38. Zegzouti, H. et al. Structural and functional insights into the regulation of Arabidopsis AGC VIIIa kinases. J. Biol. Chem. 281, 35520–35530 (2006).

    Article  CAS  Google Scholar 

  39. Barbosa, I. C. & Schwechheimer, C. Dynamic control of auxin transport-dependent growth by AGCVIII protein kinases. Curr. Opin. Plant Biol. 22, 108–115 (2014).

    Article  CAS  Google Scholar 

  40. Jaillais, Y. et al. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev. 25, 232–237 (2011).

    Article  CAS  Google Scholar 

  41. Belkhadir, Y. & Jaillais, Y. The molecular circuitry of brassinosteroid signaling. New Phytol. 206, 522–540 (2015).

    Article  CAS  Google Scholar 

  42. Michniewicz, M. et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130, 1044–1056 (2007).

    Article  CAS  Google Scholar 

  43. Lee, S. H. & Cho, H. T. PINOID positively regulates auxin efflux in Arabidopsis root hair cells and tobacco cells. Plant Cell 18, 1604–1616 (2006).

    Article  CAS  Google Scholar 

  44. Marques-Bueno, M. M. et al. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J. 85, 320–333 (2016).

    Article  CAS  Google Scholar 

  45. Kang, B. H., Nielsen, E., Preuss, M. L., Mastronarde, D. & Staehelin, L. A. Electron tomography of RabA4b- and PI-4Kbeta1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12, 313–329 (2011).

    Article  CAS  Google Scholar 

  46. Preuss, M. L. et al. A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol. 172, 991–998 (2006).

    Article  CAS  Google Scholar 

  47. Antignani, V. et al. Recruitment of PLANT U-BOX13 and the PI4Kbeta1/beta2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. Plant Cell 27, 243–261 (2015).

    Article  CAS  Google Scholar 

  48. Naramoto, S. et al. Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development 136, 1529–1538 (2009).

    Article  CAS  Google Scholar 

  49. Heilmann, M. & Heilmann, I. Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim. Biophys. Acta 1851, 759–769 (2015).

    Article  CAS  Google Scholar 

  50. Potocky, M. et al. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol. 203, 483–494 (2014).

    Article  CAS  Google Scholar 

  51. Cutler, S. R., Ehrhardt, D. W., Griffitts, J. S. & Somerville, C. R. Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl Acad. Sci. USA 97, 3718–3723 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Dreux, O. Hamant, G. Vert, T. Vernoux, S. Mongrand, A. Martiniere-Delaunay and the SiCE group for discussions and comments, J. Chory for initial support and discussions, S. Grinstein, M. Lemmon, G. Hammond, J. Friml, J. Goedhart, B. Scheres for reagents, A. Lacroix and J. Berger for plant care and PLATIM for help with imaging. Y.J. is funded by ERC no. 3363360-APPL and Marie Curie Action, no. PCIG-GA-2011-303601, under FP/2007-2013. This work was initially supported by grants from the US National Institutes of Health (GM094428) and the Howard Hughes Medical Institute to Joanne Chory and a fellowship from the H.M. Kirby foundation to Y.J. M.S. is funded by a PhD fellowship from the French Ministry of Education. T.S is supported by ERC grant no. 615739-MechanoDevo to O. Hamant.

Author information

Authors and Affiliations

Authors

Contributions

M.S., M.P. and M.C.C. produced and imaged the lipid and MSC reporter lines; M.S., M.P., M.C.C. and T.S. imaged the KA1MARK1 reporter in various tissues and plant systems; and M.S. and M.P. carried out the PAO and Wortmannin experiments. V.B. performed the FRAP experiments and helped with image quantification and acquisition; M.C.C. performed cytokinesis and N. benthamiana experiments; M.S., M.M.M.B. and L.A. performed yeast and lipid overlay experiments; M.M.M.B. and L.A. produced and imaged the MAKRs–cYFP lines; M.S. produced and phenotyped the EXP7::PID lines; M.S., M.P., M.C.C. and Y.J. conceived the study and designed experiments; and M.S., M.P., M.C.C. and Y.J. wrote the manuscript.

Corresponding authors

Correspondence to Marie-Cécile Caillaud or Yvon Jaillais.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, M., Platre, M., Marquès-Bueno, M. et al. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nature Plants 2, 16089 (2016). https://doi.org/10.1038/nplants.2016.89

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing