Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolutionary patterns of genic DNA methylation vary across land plants

Abstract

Little is known about patterns of genic DNA methylation across the plant kingdom or about the evolutionary processes that shape them. To characterize gene-body methylation (gbM) within exons, we have gathered single-base resolution methylome data that span the phylogenetic breadth of land plants. We find that a basal land plant, Marchantia polymorpha, lacks any evident signal of gbM within exons, but conifers have high levels of both CG and CHG (where H is A, C or T) methylation in expressed genes. To begin to understand the evolutionary forces that shape gbM, we first tested for correlations in methylation levels across orthologues1,2. Genic CG methylation levels, but not CHG or CHH levels, are correlated across orthologues for species as distantly related as ferns and angiosperms. Hence, relative levels of CG methylation are a consistent property across genes, even for species that diverged 400 million years ago3,4. In contrast, genic CHG methylation correlates with genome size, suggesting that the host epigenetic response to transposable elements also affects genes. Altogether, our data indicate that the evolutionary forces acting on DNA methylation vary substantially across species, genes and methylation contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A phylogeny of the sampled species with average levels of genic methylation.
Figure 2: Histograms of gbM among genes.
Figure 3: Correlations of mC level across orthologues in the CG context.
Figure 4: Plots of genome size (x axis) against the percentage of mCs in the CG, CHG and CHH contexts.

Similar content being viewed by others

References

  1. Takuno, S. & Gaut, B. S. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc. Natl Acad. Sci. USA 110, 1797–1802 (2013).

    Article  CAS  Google Scholar 

  2. Seymour, D. K., Koenig, D., Hagmann, J., Becker, C. & Weigel, D. Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet. 10, e1004785 (2014).

    Article  Google Scholar 

  3. Schneider, H. et al. Ferns diversified in the shadow of angiosperms. Nature 428, 553–557 (2004).

    Article  CAS  Google Scholar 

  4. Magallon, S., Hilu, K. W. & Quandt, D. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am. J. Bot. 100, 556–573 (2013).

    Article  CAS  Google Scholar 

  5. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).

    Article  CAS  Google Scholar 

  6. Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nature Rev. Genet. 8, 272–285 (2007).

    Article  CAS  Google Scholar 

  7. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  Google Scholar 

  8. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  Google Scholar 

  9. Greaves, I. K. et al. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl Acad. Sci. USA 109, 3570–3575 (2012).

    Article  CAS  Google Scholar 

  10. Diez, C. M., Roessler, K. & Gaut, B. S. Epigenetics and plant genome evolution. Curr. Opin. Plant Biol. 18C, 1–8 (2013).

    Google Scholar 

  11. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    Article  CAS  Google Scholar 

  12. Bird, A. P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504 (1980).

    Article  CAS  Google Scholar 

  13. Rabinowicz, P. D. et al. Differential methylation of genes and repeats in land plants. Genome Res. 15, 1431–1440 (2005).

    Article  CAS  Google Scholar 

  14. Neale, D. B. et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 15, R59 (2014).

    Article  Google Scholar 

  15. Schmitz, R. J. et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 23, 1663–1674 (2013).

    Article  CAS  Google Scholar 

  16. Regulski, M. et al. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 23, 1651–1662 (2013).

    Article  CAS  Google Scholar 

  17. The Amborella genome and the evolution of flowering plants. Science 342, 1241089 (2013).

  18. Moissiard, G. et al. Transcriptional gene silencing by Arabidopsis microrchidia homologues involves the formation of heteromers. Proc. Natl Acad. Sci. USA 111, 7474–7479 (2014).

    Article  CAS  Google Scholar 

  19. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).

    Article  CAS  Google Scholar 

  20. Alonso, C., Perez, R., Bazaga, P. & Herrera, C. M. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms. Front Genet. 6, 4 (2015).

    Article  Google Scholar 

  21. Tenaillon, M. I., Hollister, J. D. & Gaut, B. S. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 15, 471–478 (2010).

    Article  CAS  Google Scholar 

  22. Symonds, M. R. E. & Blomberg, S. P. in Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi, L. Z. ) 105–130 (Springer, 2014).

    Book  Google Scholar 

  23. Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    Article  CAS  Google Scholar 

  24. Gent, J. I. et al. Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. Plant Cell 26, 4903–4917 (2014).

    Article  CAS  Google Scholar 

  25. Miura, A. et al. An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J. 28, 1078–1086 (2009).

    Article  CAS  Google Scholar 

  26. Ji, L., Neumann, D. A. & Schmitz, R. J. Crop epigenomics: identifying, unlocking, and harnessing cryptic variation in crop genomes. Mol. Plant (2015).

  27. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Rev. Genet. 13, 484–492 (2012).

    Article  CAS  Google Scholar 

  28. Kim, M. Y. & Zilberman, D. DNA methylation as a system of plant genomic immunity. Trends Plant Sci. 19, 320–326 (2014).

    Article  CAS  Google Scholar 

  29. Coleman-Derr, D. & Zilberman, D. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet. 8, e1002988 (2012).

    Article  CAS  Google Scholar 

  30. Roudier, F., Teixeira, F. K. & Colot, V. Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more. Trends Genet. 25, 511–517 (2009).

    Article  CAS  Google Scholar 

  31. Schiex, T., Gouzy, J., Moisan, A. & de Oliveira, Y. FrameD: a flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences. Nucleic Acids Res. 31, 3738–3741 (2003).

    Article  CAS  Google Scholar 

  32. Salzberg, S. L., Delcher, A. L., Kasif, S. & White, O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26, 544–548 (1998).

    Article  CAS  Google Scholar 

  33. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  34. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  Google Scholar 

  35. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  36. Finet, C., Timme, R. E., Delwiche, C. F. & Marletaz, F. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr. Biol. 20, 2217–2222 (2010).

    Article  CAS  Google Scholar 

  37. Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).

    Article  CAS  Google Scholar 

  38. Huelsenbeck, J. P. & Suchard, M. A. A nonparametric method for accommodating and testing across-site rate variation. Syst. Biol. 56, 975–987 (2007).

    Article  Google Scholar 

  39. Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).

    Article  CAS  Google Scholar 

  40. Bennett, M. D. & Leitch, I. J. Plant DNA C-values database (release 6.0). (2012).

  41. O'Brien, K. P., Remm, M. & Sonnhammer, E. L. Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 33, D476–D480 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Bousquet (University of Laval, Canada), J. Der (Cal State Fullerton, USA), C. Depamphilis (Penn State University, USA), K. Ishizaki (Kobe University, Japan), T. Kohchi (Kyoto University, Japan), C. Langley (University of California Davis, USA) and D. Stevenson (New York Botanical Garden, USA) for plant DNA and tissue. R. Gaut (University of Californa Irvine, USA) generated the BSseq libraries; C. Finet (University of Lyon, France) shared the alignment of amino acid sequences from his study; A. Delcher (John Hopkins University, USA) provided Glimmer software. J. A. Fawcett (Graduate University for Advanced Studies, Japan), A. Bousios (University of Sussex, UK), S. Hug, K. Roessler, Q. Liu and A. Gonzalez-Gonzalez provided helpful suggestions. S.T. is supported by an internal grant from SOKENDAI and JSPS Grant-in-Aid for Young Scientists (B) (grant no. 15K18585); J.-H.R. is supported by the National Natural Science Foundation of China (grant no. 31330008) and B.S.G. is supported by NSF Grant IOS-1542703.

Author information

Authors and Affiliations

Authors

Contributions

J.-H.R. and B.S.G. conceived of the project; S.T. and J.-H.R. analysed data; S.T., J.-H.R. and B.S.G. wrote the paper. All authors approved the manuscript.

Corresponding authors

Correspondence to Jin-Hua Ran or Brandon S. Gaut.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takuno, S., Ran, JH. & Gaut, B. Evolutionary patterns of genic DNA methylation vary across land plants. Nature Plants 2, 15222 (2016). https://doi.org/10.1038/nplants.2015.222

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.222

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research