Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Granular matter

So much for the jamming point

The concept of an evolving jamming density explains a multitude of mechanisms in granular matter. Simulations of systems with friction now consolidate this notion and highlight that the jamming point is a variable that can move in various ways whenever the system is deformed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of granular- and soft-matter density regimes, below and above the jamming density, for three different types of materials.

References

  1. Goddard, J. D. Appl. Mech. Rev. 66, 050801 (2014).

    Article  ADS  Google Scholar 

  2. Jiang, Y. & Liu, M. Acta Mechanica 225, 2363–2384 (2014).

    Article  MathSciNet  Google Scholar 

  3. Vinutha, H. A. & Sastry, S. Nature Phys. 12, 578–583 (2016).

    Article  ADS  Google Scholar 

  4. Vågberg, D., Olsson, P. & Teitel, S. Phys. Rev. E. 83, 031307 (2011).

    Article  ADS  Google Scholar 

  5. Kumar, N. & Luding, S. Granular Matter (in the press); preprint at http://arxiv.org/abs/1407.6167

  6. Morse, P. K. & Corwin, E. I. Phys. Rev. Lett. 112, 115701 (2014).

    Article  ADS  Google Scholar 

  7. Liu, A. J. & Nagel, S. R. Nature 396, 21–22 (1998).

    Article  ADS  Google Scholar 

  8. Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Nature 480, 355–358 (2011).

    Article  ADS  Google Scholar 

  9. Bertrand, T., Behringer, R. P., Chakraborty, B., O'Hern, C. S. & Shattuck, M. D. Phys. Rev. E 93, 012901 (2016).

    Article  ADS  Google Scholar 

  10. Kumar, N., Luding, S. & Magnanimo, V. Acta Mechanica 225, 2319–2343 (2014).

    Article  MathSciNet  Google Scholar 

  11. Ogarko, V. & Luding, S. Soft Matter 9, 9530–9534 (2013).

    Article  ADS  Google Scholar 

  12. Jiao, Y., Stillinger, F. H. & Torquato, S. J. App. Phys 109, 013508 (2011).

    Article  ADS  Google Scholar 

  13. Luding, S. Nonlinearity 22, R101–R146 (2009).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Luding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luding, S. So much for the jamming point. Nature Phys 12, 531–532 (2016). https://doi.org/10.1038/nphys3680

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing