Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Itinerant density wave instabilities at classical and quantum critical points

Abstract

Charge ordering in metals is a fundamental instability of the electron sea, occurring in a host of materials and often linked to other collective ground states such as superconductivity. What is difficult to parse, however, is whether the charge order originates among the itinerant electrons or whether it arises from the ionic lattice. Here we employ high-resolution X-ray diffraction, combined with high-pressure and low-temperature techniques and theoretical modelling, to trace the evolution of the ordering wavevector Q in charge and spin density wave systems at the approach to both thermal and quantum phase transitions. The non-monotonic behaviour of Q with pressure and the limiting sinusoidal form of the density wave point to the dominant role of the itinerant instability in the vicinity of the critical points, with little influence from the lattice. Fluctuations rather than disorder seem to disrupt coherence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pressure–temperature evolution of the incommensurate wavevector Q.
Figure 2: Temperature evolution of wavevector Q.
Figure 3: CDW harmonics in NbSe2.
Figure 4: Temperature evolution of CDW harmonics in NbSe2.
Figure 5: Theoretical modelling of Q(T, P).
Figure 6: CDW fluctuations near the thermal and quantum critical points.

Similar content being viewed by others

References

  1. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence of stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  2. Jaramillo, R. et al. Breakdown of the Bardeen–Cooper–Schrieffer ground state at a quantum phase transition. Nature 459, 405–409 (2009).

    Article  ADS  Google Scholar 

  3. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    Article  ADS  Google Scholar 

  4. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nature Phys. 8, 871–876 (2012).

    Article  ADS  Google Scholar 

  5. Feng, Y. et al. Order parameter fluctuations at a buried quantum critical point. Proc. Natl Acad. Sci. USA 109, 7224–7229 (2012).

    Article  ADS  Google Scholar 

  6. Feng, Y. et al. Hidden one-dimensional spin modulation in a three-dimensional metal. Nature Commun. 5, 4218 (2014).

    Article  ADS  Google Scholar 

  7. Pfleiderer, C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 81, 1551–1624 (2009).

    Article  ADS  Google Scholar 

  8. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

  9. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  Google Scholar 

  10. Littlewood, P. B. & Varma, C. M. Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity. Phys. Rev. Lett. 47, 811–814 (1981).

    Article  ADS  Google Scholar 

  11. Paschen, S. et al. Hall-effect evolution across a heavy fermion quantum critical point. Nature 432, 881–885 (2004).

    Article  ADS  Google Scholar 

  12. Löhneysen, H. V., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article  ADS  Google Scholar 

  13. Peierls, R. E. Quantum Theory of Solids 108–112 (Oxford Univ. Press, 1955).

    MATH  Google Scholar 

  14. Overhauser, A. W. Spin density waves in an electron gas. Phys. Rev. 128, 1437–1452 (1962).

    Article  ADS  Google Scholar 

  15. Rice, T. M. & Scott, G. K. New mechanism for a charge-density-wave instability. Phys. Rev. Lett. 35, 120–123 (1975).

    Article  ADS  Google Scholar 

  16. Abanov, Ar. & Chubukov, A. V. Spin-fermion model near the quantum critical point: One-loop renormalization group results. Phys. Rev. Lett. 84, 5608–5611 (2000).

    Article  ADS  Google Scholar 

  17. Chan, S.-K. & Heine, V. Spin density wave and soft phonon mode from nesting Fermi surfaces. J. Phys. F 3, 795–809 (1973).

    Article  ADS  Google Scholar 

  18. Johannes, M. D. & Mazin, I. I. Fermi surface nesting and the origin of charge density waves in metals. Phys. Rev. B 77, 165135 (2008).

    Article  ADS  Google Scholar 

  19. Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. B 158, 462–475 (1967).

    Article  ADS  Google Scholar 

  20. van Wezel, J., Nahai-Williamson, P. & Saxena, S. S. Exciton–phonon-driven charge density wave in TiSe2 . Phys. Rev. B 81, 165109 (2010).

    Article  ADS  Google Scholar 

  21. Altshuler, B. L., Ioffe, L. B. & Millis, A. J. Critical behavior of the T = 0 2kF density-wave phase transition in a two-dimensional Fermi liquid. Phys. Rev. B 52, 5563–5572 (1995).

    Article  ADS  Google Scholar 

  22. Metlitski, M. A. & Sachdev, S. Quantum phase transitions of metals in two spatial dimensions. II. Spin density wave order. Phys. Rev. B 82, 075128 (2010).

    Article  ADS  Google Scholar 

  23. Bergeron, D., Chowdhury, D., Punk, M., Sachdev, S. & Tremblay, A.-M. S. Breakdown of Fermi liquid behavior at the (π, π) = 2kF spin-density wave quantum-critical point: The case of electron-doped cuprates. Phys. Rev. B 86, 155123 (2012).

    Article  ADS  Google Scholar 

  24. Borisenko, S. V. et al. Two energy gaps and Fermi-surface “arcs” in NbSe2 . Phys. Rev. Lett. 102, 166402 (2009).

    Article  ADS  Google Scholar 

  25. Jaramillo, R., Feng, Y., Wang, J. & Rosenbaum, T. F. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl Acad. Sci. USA 107, 13631–13635 (2010).

    Article  ADS  Google Scholar 

  26. Feng, Y., Jaramillo, R., Wang, J., Ren, Y. & Rosenbaum, T. F. High-pressure techniques for condensed matter physics at low temperature. Rev. Sci. Instrum. 81, 041301 (2010).

    Article  ADS  Google Scholar 

  27. Umebayashi, H., Shirane, G., Frazer, B. C. & Daniels, W. B. Neutron diffraction study of Cr under high pressure. J. Phys. Soc. Jpn 24, 368–372 (1968).

    Article  ADS  Google Scholar 

  28. McWhan, D. B., Fleming, R. M., Moncton, D. E. & DiSalvo, F. J. Reentrant lock-in transition of the charge-density wave in 2H-TaSe2 at high pressure. Phys. Rev. Lett. 45, 269–272 (1980).

    Article  ADS  Google Scholar 

  29. Feng, Y. et al. Incommensurate antiferromagnetism in a pure spin system via cooperative organization of local and itinerant moments. Proc. Natl Acad. Sci. USA 110, 3287–3292 (2013).

    Article  ADS  Google Scholar 

  30. Ru, N. et al. Effect of chemical pressure on the charge density wave transition in rare-earth tritellurides RTe3 . Phys. Rev. B 77, 035114 (2008).

    Article  ADS  Google Scholar 

  31. Berthier, C., Molinié, P. & Jérome, D. Evidence for a connection between charge density waves and the pressure enhancement of superconductivity in 2H-NbSe2 . Solid State Commun. 18, 1393–1395 (1976).

    Article  ADS  Google Scholar 

  32. Monçeau, P., Ong, N. P., Portis, A. M., Meerschaut, A. & Rouxel, J. Electric field breakdown of charge-density-wave-induced anomalies in NbSe3 . Phys. Rev. Lett. 37, 602–606 (1976).

    Article  ADS  Google Scholar 

  33. Lee, H. N. S., McKinzie, H., Tannhauser, D. S. & Wold, A. The low-temperature transport properties of NbSe2 . J. Appl. Phys. 40, 602–604 (1969).

    Article  ADS  Google Scholar 

  34. McMillan, W. L. Microscopic model of charge-density-wave in 2H-TaSe2 . Phys. Rev. B 15, 643–650 (1977).

    Article  ADS  Google Scholar 

  35. Kagoshima, S., Ishiguro, T. & Anzai, H. X-ray scattering study of phonon anomalies and superstructures in TTF-TNQ. J. Phys. Soc. Jpn 41, 2061–2071 (1976).

    Article  ADS  Google Scholar 

  36. Moncton, D. E., Axe, J. D. & DiSalvo, F. J. Neutron scattering study of the charge-density wave transition in 2H-TaSe2 and 2H-NbSe2 . Phys. Rev. B 16, 801–819 (1977).

    Article  ADS  Google Scholar 

  37. Hill, J. P., Helgesen, G. & Gibbs, D. X-ray-scattering study of charge- and spin-density-waves in chromium. Phys. Rev. B 51, 10336–10344 (1995).

    Article  ADS  Google Scholar 

  38. Fukuyama, H. & Lee, P. A. Dynamics of the charge-density wave. I. Impurity pinning in a single chain. Phys. Rev. B 17, 535–541 (1978).

    Article  ADS  Google Scholar 

  39. Jensen, J. & Mackintosh, A. R. Helifan: A new type of magnetic structure. Phys. Rev. Lett. 64, 2699–2702 (1990).

    Article  ADS  Google Scholar 

  40. McMillan, W. L. Theory of discommensurations and the commensurate–incommensurate charge-density-wave phase transition. Phys. Rev. B 14, 1496–1502 (1976).

    Article  ADS  Google Scholar 

  41. Soumyanarayanan, A. et al. Quantum phase transition from triangular to stripe charge order in NbSe2 . Proc. Natl Acad. Sci. USA 110, 1623–1627 (2013).

    Article  ADS  Google Scholar 

  42. Vanhoof, V., Rots, M. & Cottenier, S. Spin-density wave in Cr: Nesting versus low-lying thermal excitations. Phys. Rev. B 80, 184420 (2009).

    Article  ADS  Google Scholar 

  43. DiCarlo, D., Thorne, R. E., Sweetland, E., Sutton, M. & Brock, J. D. Charge-density-wave structure in NbSe3 . Phys. Rev. B 50, 8288–8296 (1994).

    Article  ADS  Google Scholar 

  44. Schutte, W. J. & DeBoer, J. L. Valence fluctuations in the incommensurately modulated structure of calaverite AuTe2 . Acta Crystallogr. B 44, 486–494 (1988).

    Article  Google Scholar 

  45. Sentef, M. et al. Examining electron-boson coupling using time-resolved spectroscopy. Phys. Rev. X 3, 041033 (2013).

    Google Scholar 

  46. Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3 . Science 321, 1649–1652 (2008).

    Article  ADS  Google Scholar 

  47. Makogon, D., Spielman, I. B. & Smith, C. M. Spin-charge-density wave in a rounded-square Fermi surface for ultracold atoms. Europhys. Phys. Lett. 97, 33002 (2012).

    Article  ADS  Google Scholar 

  48. Parker, C. V., Ha, L.-C. & Chin, C. Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice. Nature Phys. 9, 769–774 (2013).

    Article  ADS  Google Scholar 

  49. Feng, Y. et al. Energy dispersive X-ray diffraction of charge density waves via chemical filtering. Rev. Sci. Instrum. 76, 063913 (2005).

    Article  ADS  Google Scholar 

  50. Fleming, R. M., Moncton, D. E. & McWhan, D. B. X-ray scattering and electric field studies of the sliding mode conductor NbSe3 . Phys. Rev. B 18, 5560–5563 (1978).

    Article  ADS  Google Scholar 

  51. Moudden, A. H., Axe, J. D., Monceau, P. & Levy, F. q1 charge-density wave in NbSe3 . Phys. Rev. Lett. 65, 223–226 (1990).

    Article  ADS  Google Scholar 

  52. Fleming, R. M., Schneemeyer, L. F. & Moncton, D. E. Commensurate–incommensurate transition in the charge-density-wave state of K0.30MoO3 . Phys. Rev. B 31, 899–903 (1985).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for stimulating discussions with R. Jaramillo, C. V. Parker and M. R. Norman, and for NbSe2 samples provided by Y. Liu and Z.-A. Xu. The work at the University of Chicago was supported by National Science Foundation Grant No. 1206519. The work at the Advanced Photon Source of Argonne National Laboratory was supported by the US Department of Energy Basic Energy Sciences under Contract No. NEAC02-06CH11357. J.v.W. acknowledges support from a VIDI grant financed by the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. and T.F.R. conceived the research. Y.F. and J.W. performed X-ray measurements. Y.F., D.M.S. and T.F.R. analysed the data. Y.F., J.v.W., F.F. and P.B.L. developed the theoretical framework. Y.F., J.v.W. and T.F.R. prepared the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to Yejun Feng or T. F. Rosenbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., van Wezel, J., Wang, J. et al. Itinerant density wave instabilities at classical and quantum critical points. Nature Phys 11, 865–871 (2015). https://doi.org/10.1038/nphys3416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing