Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities

Abstract

For future ultrafast all-optical networks, new optical devices are required that can directly manipulate communication channels and shift their wavelength over the bandwidth of an optical fibre (50 THz)1,2. Solutions based on nonlinear processes have been proposed, but these suffer from having only low efficiencies as a result of low nonlinear susceptibilities3. Here, we demonstrate all-optical wavelength conversion of a near-infrared beam using a resonant nonlinear process within a terahertz quantum cascade laser4. The process is based on injecting a low-power continuous-wave near-infrared beam in resonance with the interband transitions of the quantum cascade laser. This results in an enhanced nonlinearity that allows efficient generation of the difference and sum frequency, shifting the frequency of the near-infrared beam by the frequency of the quantum cascade laser. Efficiencies of 0.13% are demonstrated, which are equivalent to those obtained using free electron lasers. As well as having important implications in its application in ultrafast wavelength shifting, this work also opens up the possibility of efficiently upconverting terahertz radiation to the near-infrared and enables the study of high terahertz–optical field interactions with quantum structures using quantum cascade lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme principle and optical modes.
Figure 2: Wavelength shifting using interband excitation.
Figure 3: Resonant behaviour and polarization effect of the NIR pump.
Figure 4: Confined states involved in resonant nonlinear interaction.

Similar content being viewed by others

References

  1. Eldada, L. Optical communication components. Rev. Sci. Instrum. 75, 575–593 (2004).

    Article  ADS  Google Scholar 

  2. Desurvire, E. Capacity demand and technology challenges for lightwave systems in the next two decades. J. Lightwave Technol. 24, 4697–4710 (2006).

    Article  ADS  Google Scholar 

  3. Campi, D. & Coriasso, C. Wavelength conversion technologies. Photon. Network Commun. 2, 85–95 (2000).

    Article  Google Scholar 

  4. Köhler, R. et al. Terahertz semiconductor–heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  5. DeCusatis, C., Maass, E., Clement, D. P. & Lasky, R. C. (eds) Handbook of Fiber Optic Data Communication (Academic Press, 1998).

  6. Sirtori, C., Capasso, F., Faist, J., Pfeiffer, L. N. & West K. W. Far-infrared generation of doubly resonant difference frequency mixing in a coupled quantum well two dimensional electron gas system. Appl. Phys. Lett. 65, 445–447 (1994).

    Article  ADS  Google Scholar 

  7. Belkin, M. A. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nature Photon. 1, 288–292 (2007).

    Article  ADS  Google Scholar 

  8. Kono, J. et al. Resonant terahertz optical sideband generation from confined magnetoexcitons. Phys. Rev. Lett. 79, 1758–1761 (1997).

    Article  ADS  Google Scholar 

  9. Černe, J. Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells. Appl. Phys. Lett. 70, 3543–3545 (1997).

    Article  ADS  Google Scholar 

  10. Phillips, C., Su, M. Y., Sherwin, M. S., Ko, J. & Coldren, L. Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells. Appl. Phys. Lett. 75, 2728–2730 (1999).

    Article  ADS  Google Scholar 

  11. Carter, S. G. et al. Terahertz-optical mixing in undoped and doped GaAs quantum wells: from excitonic to electronic intersubband transitions. Phys. Rev. B 72, 155309 (2005).

    Article  ADS  Google Scholar 

  12. Ciulin, V., Carter, S. G., Sherwin, M. S., Huntington, A. & Coldren, L. A. Terahertz optical mixing in biased GaAs single quantum wells. Phys. Rev. B 70, 115312 (2004).

    Article  ADS  Google Scholar 

  13. Su, M. Y., Carter, S. G., Sherwin, M. S., Huntington, A. & Coldren, L. A. Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells. Appl. Phys. Lett. 81, 1564–1566 (2002).

    Article  ADS  Google Scholar 

  14. Wagner, M. et al. Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells. Appl. Phys. Lett. 94, 241105 (2009).

    Article  ADS  Google Scholar 

  15. Carter, S. G. et al. Terahertz electro-optic wavelength conversion in GaAs quantum wells: improved efficiency and room-temperature operation. Appl. Phys. Lett. 84, 840–842 (2004).

    Article  ADS  Google Scholar 

  16. Williams, B. S. Terahertz quantum cascade lasers. Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  17. Dhillon, S. S. et al. Terahertz transfer onto a telecom optical carrier. Nature Photon. 1, 411–415 (2007).

    Article  ADS  Google Scholar 

  18. Zervos, C. et al. Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers. Appl. Phys. Lett. 89, 183507 (2006).

    Article  ADS  Google Scholar 

  19. Barbieri, S. et al. 2.9 THz quantum cascade lasers operating up to 70 K in continuous wave. Appl. Phys. Lett. 85, 1674–1676 (2004).

    Article  ADS  Google Scholar 

  20. Rosencher, E. & Vinter B. Optoelectronics 2nd edn (Dunod, 2002).

  21. Freeman, J. R., Brewer, A., Beere, H. E. & Ritchie, D. A. Photo-luminescence study of heterogeneous terahertz quantum cascade lasers. J. Appl. Phys. 110, 013103 (2011).

    Article  ADS  Google Scholar 

  22. Vitiello, M. S. et al. Measurement of subband electronic temperatures and population inversion in THz quantum cascade lasers. Appl. Phys. Lett. 86, 111115 (2005).

    Article  ADS  Google Scholar 

  23. Sutherland, R. L., McLean, D. G. & Kirkpatrick, S. Handbook of Nonlinear Optics (CRC Press, 2003).

  24. Rosencher, E. & Bois, Ph. Model system for optical non-linearities: asymmetric quantum wells. Phys. Rev. B 44, 011315 (1991).

    Article  Google Scholar 

  25. Yariv, A. Quantum Electronics 3rd edn (Wiley, 1989).

  26. Blakemore, J. S. Semiconducting and other major properties of gallium arsenide, J. Appl. Phys. 53, R123–R181 (1982).

    Article  ADS  Google Scholar 

  27. Garmire, E., Kost, A. & Khurgin, J. Nonlinear Optics in Semiconductors II (Academic Press, 1999).

  28. Khurgin, J. Second-order nonlinear effects in asymmetric quantum-well structures. Phys. Rev. B 38, 4056–4066 (1988).

    Article  ADS  Google Scholar 

  29. Scalari, G. THz and sub-THz quantum cascade lasers. Laser Photon. Rev. 3, 45–66 (2009).

    Article  ADS  Google Scholar 

  30. Faist, J. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  31. Shin, W., Han, S. W., Park, C. S. & Oh, K. All fiber optical inter-band router for broadband wavelength division multiplexing. Opt. Express. 12, 1815–1822 (2004).

    Article  ADS  Google Scholar 

  32. Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98, 181106 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Programme Francilien de Recherche en Nanosciences (CNano-IDF, contract TeraConversion) and the Agence Nationale de la Recherche (ANR, contract no. HI-TEQ ANR-09-NANO-017). J.R.F. acknowledges funding from the Marie Curie Action fellowship (grant no. 274602). J.M. acknowledges funding from the French Ministry of Defense (DGA). Laboratoire Pierre Aigrain (LPA) is a Unité Mixte de Recherche Associée à l'ENS, of the Centre National de la Recherche Scientifique (CNRS) UMR8551 and of Universités Paris 6 and 7. Device fabrication was performed at the nanocentre La Centrale de Technologie Universitaire (CTU-IEF-Minerve), which is partially funded by the Conseil General de l'Essonne.

Author information

Authors and Affiliations

Authors

Contributions

J.M. and P.C. set up the experiment, acquired the experimental data and contributed equally to the work. S.S.D. conceived the experimental concept. Photoluminescence measurements were taken by J.R.F., K.M. and P.C. Sample growth was performed by H.E.B. and D.A.R. The manuscript was written and the data interpreted by J.M., P.C., J.R.F., N.J., J.M., J.T., C.S. and S.S.D. C.S. provided insight and interpretation of the nonlinear properties of QCLs. All work was coordinated and overseen by J.T. and S.S.D.

Corresponding author

Correspondence to Sukhdeep S. Dhillon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 724 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madéo, J., Cavalié, P., Freeman, J. et al. All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities. Nature Photon 6, 519–524 (2012). https://doi.org/10.1038/nphoton.2012.157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing