Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fast spin information transfer between distant quantum dots using individual electrons

Abstract

Transporting ensembles of electrons over long distances without losing their spin polarization is an important benchmark for spintronic devices. It usually requires injecting and probing spin-polarized electrons in conduction channels using ferromagnetic contacts1,2 or optical excitation3,4,5. In parallel with this development, important efforts have been dedicated to achieving control of nanocircuits at the single-electron level. The detection and coherent manipulation of the spin of a single electron trapped in a quantum dot are now well established6,7,8. Combined with the recently demonstrated control of the displacement of individual electrons between two distant quantum dots9,10, these achievements allow the possibility of realizing spintronic protocols at the single-electron level. Here, we demonstrate that spin information carried by one or two electrons can be transferred between two quantum dots separated by a distance of 4 μm with a classical fidelity of 65%. We show that at present it is limited by spin flips occurring during the transfer procedure before and after electron displacement. Being able to encode and control information in the spin degree of freedom of a single electron while it is being transferred over distances of a few micrometres on nanosecond timescales will pave the way towards ‘quantum spintronics’ devices, which could be used to implement large-scale spin-based quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and characterizations of quantum dots.
Figure 2: Local spin relaxation measurements in the reception dot and electron transfer between the source and reception dots.
Figure 3: Non-local spin relaxation measurements.

Similar content being viewed by others

References

  1. Dlubak, B. et al. Highly efficient spin transport in epitaxial graphene on SiC. Nature Phys. 8, 557–561 (2012).

    Article  CAS  Google Scholar 

  2. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  CAS  Google Scholar 

  3. Kato, Y., Myers, R., Gossard, A. & Awschalom, D. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004).

    Article  CAS  Google Scholar 

  4. Stotz, J. A. H., Hey, R., Santos, P. V. & Ploog, K. H. Coherent spin transport through dynamic quantum dots. Nature Mater. 4, 585–588 (2005).

    Article  CAS  Google Scholar 

  5. Sanada, H. et al. Manipulation of mobile spin coherence using magnetic-field-free electron spin resonance. Nature Phys. 9, 280–283 (2013).

    Article  CAS  Google Scholar 

  6. Hanson, R., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  7. Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet–triplet qubits. Science 336, 202–205 (2012).

    Article  CAS  Google Scholar 

  8. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nature Nanotech. 9, 981–985 (2014).

    Article  CAS  Google Scholar 

  9. Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    Article  CAS  Google Scholar 

  10. McNeil, R. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

    Article  CAS  Google Scholar 

  11. Thalineau, R. et al. A few-electron quadruple quantum dot in a closed loop. Appl. Phys. Lett. 101, 103102 (2012).

    Article  Google Scholar 

  12. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 209, 2180–2184 (2005).

    Article  Google Scholar 

  13. Medford, J. et al. Quantum-dot-based resonant exchange qubit. Phys. Rev. Lett. 111, 050501 (2013).

    Article  CAS  Google Scholar 

  14. Sanchez, R. et al. Long-range spin transfer in triple quantum dots. Phys. Rev. Lett. 112, 176803 (2014).

    Article  CAS  Google Scholar 

  15. Baart, T. A. et al. Single-spin CCD. Nature Nanotech. 11, 330–334 (2016).

    Article  CAS  Google Scholar 

  16. Bertrand, B. et al. Quantum manipulation of two-electron spin states in isolated double quantum dots. Phys. Rev. Lett. 115, 096801 (2015).

    Article  Google Scholar 

  17. Meunier, T. et al. High fidelity measurement of singlet–triplet state in a quantum dot. Phys. Status Solidi B 243, 3855–3858 (2006).

    Article  CAS  Google Scholar 

  18. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  19. Amasha, S. et al. Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett. 100, 046803 (2008).

    Article  CAS  Google Scholar 

  20. Meunier, T. et al. Experimental signature of phonon-mediated spin relaxation in a two-electron quantum dot. Phys. Rev. Lett. 98, 126601 (2007).

    Article  CAS  Google Scholar 

  21. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  22. Dugaev, V. K., Sherman, E. Y., Ivanov, V. I. & Barnas, J. Spin relaxation and combined resonance in two-dimensional electron systems with spin–orbit disorder. Phys. Rev. B 80, 081301 (2009).

    Article  Google Scholar 

  23. Huang, P. & Hu, X. Spin qubit relaxation in a moving quantum dot. Phys. Rev. B 88, 075301 (2013).

    Article  Google Scholar 

  24. Meier, L. et al. Measurement of Rashba and Dresselhaus spin–orbit magnetic fields. Nature Phys. 3, 650–654 (2007).

    Article  CAS  Google Scholar 

  25. Stepanenko, D., Rudner, M., Halperin, B. I. & Loss, D. Singlet–triplet splitting in double quantum dots due to spin–orbit and hyperfine interactions. Phys. Rev. B 85, 075416 (2012).

    Article  Google Scholar 

  26. Bertrand, B. et al. Injection of a single electron from static to moving quantum dots. Nanotechnology 27, 214001 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge technical support from the technological centres of the Institut Néel. S.Tak. acknowledges financial support from Marie Sklodowska-Curie grant agreement no. 654603. M.Y. and S.Tar. acknowledge financial support from JSPS (grant nos. 26247050, 25610070 and 26220710). S.Tar. acknowledges financial support from MEXT KAKENHI ‘Quantum Cybernetics’, MEXT project for Developing Innovation Systems, and the JST Strategic International Cooperative. A.L. and A.D.W. acknowledge support from BMBF Q.com-H 16KIS0109, Mercur Pr-2013-0001 and DFH/UFA CDFA-05-06. B.B. and T.M. acknowledge financial support from ERC ‘QSPINMOTION’ and the Fondation Nanosciences.

Author information

Authors and Affiliations

Authors

Contributions

B.B. performed the experiments. B.B. and T.M. interpreted the data. B.B., C.B. and T.M. wrote the manuscript. S.Tak. designed and fabricated the sample with M.Y. and S.Tar. S.H. contributed to the experimental set-up. A.L. and A.D.W. provided the high-mobility heterostructures. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to T. Meunier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertrand, B., Hermelin, S., Takada, S. et al. Fast spin information transfer between distant quantum dots using individual electrons. Nature Nanotech 11, 672–676 (2016). https://doi.org/10.1038/nnano.2016.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing