Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gate-induced superconductivity in atomically thin MoS2 crystals

Abstract

When thinned down to the atomic scale, many layered van der Waals materials exhibit an interesting evolution of their electronic properties, whose main aspects can be accounted for by changes in the single-particle bandstructure. Phenomena driven by interactions are also observed, but identifying experimentally systematic trends in their thickness dependence is challenging. Here, we explore the evolution of gate-induced superconductivity in exfoliated MoS2 multilayers ranging from bulk-like to individual monolayers. We observe a clear transition for all thicknesses down to the ultimate atomic limit, providing the first demonstration of gate-induced superconductivity in atomically thin exfoliated crystals. Additionally, we characterize the superconducting state by measuring the critical temperature TC and magnetic field BC in a large number of multilayer devices while decreasing their thickness. We find that the superconducting properties exhibit a pronounced reduction in TC and BC when going from bilayers to monolayers, for which we discuss possible microscopic mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device characteristics and superconductivity in an ionic-liquid-gated six-layer MoS2 transistor.
Figure 2: Gate-induced superconductivity in monolayer MoS2.
Figure 3: Superconductivity in bilayer MoS2.
Figure 4: Evolution of superconductivity in MoS2 on decreasing the thickness to the atomic scale.

Similar content being viewed by others

References

  1. Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

    Article  CAS  Google Scholar 

  2. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  4. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  5. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  6. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  7. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  8. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  9. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  10. Koshino, M. & McCann, E. Parity and valley degeneracy in multilayer graphene. Phys. Rev. B 81, 115315 (2010).

    Article  Google Scholar 

  11. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  12. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  13. Partoens, B. & Peeters, F. M. Normal and Dirac fermions in graphene multilayers: tight-binding description of the electronic structure. Phys. Rev. B 75, 193402 (2007).

    Article  Google Scholar 

  14. Nilsson, J., Castro Neto, A. H., Guinea, F. & Peres, N. M. R. Electronic properties of bilayer and multilayer graphene. Phys. Rev. B 78, 045405 (2008).

    Article  Google Scholar 

  15. Cappelluti, E., Roldán, R., Silva-Guillén, J. A., Ordejón, P. & Guinea, F. Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2 . Phys. Rev. B 88, 075409 (2013).

    Article  Google Scholar 

  16. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

    Article  Google Scholar 

  17. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

    Article  CAS  Google Scholar 

  18. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  19. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    Article  CAS  Google Scholar 

  20. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Mater. 13, 1091–1095 (2014).

    Article  CAS  Google Scholar 

  21. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).

    Article  CAS  Google Scholar 

  22. Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nature Nanotech. 7, 156–160 (2012).

    Article  CAS  Google Scholar 

  23. Grushina, A. L. et al. Insulating state in tetralayers reveals an even–odd interaction effect in multilayer graphene. Nature Commun. 6, 6419 (2015).

    Article  CAS  Google Scholar 

  24. Yoshida, M. et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2 . Sci. Rep. 4, 7302 (2014).

    Article  CAS  Google Scholar 

  25. Frindt, R. F. Superconductivity in ultrathin NbSe2 layers. Phys. Rev. Lett. 28, 299–301 (1972).

    Article  CAS  Google Scholar 

  26. Gamble, F. R., Osiecki, J. H., Cais, M. & Pisharody, R. Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174, 493–497 (1971).

    Article  CAS  Google Scholar 

  27. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  Google Scholar 

  28. Panzer, M. J., Newman, C. R. & Frisbie, C. D. Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 86, 103503 (2005).

    Article  Google Scholar 

  29. Shimotani, H., Asanuma, H., Takeya, J. & Iwasa, Y. Electrolyte-gated charge accumulation in organic single crystals. Appl. Phys. Lett. 89, 203501 (2006).

    Article  Google Scholar 

  30. Misra, R., McCarthy, M. & Hebard, A. F. Electric field gating with ionic liquids. Appl. Phys. Lett. 90, 052905 (2007).

    Article  Google Scholar 

  31. Jo, S., Costanzo, D., Berger, H. & Morpurgo, A. F. Electrostatically induced superconductivity at the surface of WS2 . Nano Lett. 15, 1197–1202 (2015).

    Article  CAS  Google Scholar 

  32. Ochoa, H., Finocchiaro, F., Guinea, F. & Fal'ko, V. I. Spin–valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides. Phys. Rev. B 90, 235429 (2014).

    Article  Google Scholar 

  33. Horowitz, G., Hajlaoui, M. E. & Hajlaoui, R. Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 87, 4456–4463 (2000).

    Article  CAS  Google Scholar 

  34. Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2 . Nature Phys. http://dx.doi.org/10.1038/nphys3580 (2015).

  35. Berezinskĭi, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. classical systems. Sov. J. Exp. Theor. Phys. 32, 493–500 (1971).

    Google Scholar 

  36. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973).

    Article  CAS  Google Scholar 

  37. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  38. Scalapino, D. J. in Superconductivity Vol. 1 (ed. Parks, R. D.) Ch. 10, 449–560 (Marcel Dekker, 1969).

  39. Santos, E. J. G. & Kaxiras, E. Electrically driven tuning of the dielectric constant in MoS2 layers. ACS Nano 7, 10741–10746 (2013).

    Article  CAS  Google Scholar 

  40. Chen, X. et al. Probing the electron states and metal–insulator transition mechanisms in molybdenum disulphide vertical heterostructures. Nature Commun. 6, 6088 (2015).

  41. Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

    Article  CAS  Google Scholar 

  42. Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab-initio theory. Phys. Rev. B 79, 115409 (2009).

    Article  Google Scholar 

  43. Ge, Y. & Liu, A. Y. Phonon-mediated superconductivity in electron-doped single-layer MoS2: a first-principles prediction. Phys. Rev. B 87, 241408 (2013).

    Article  Google Scholar 

  44. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 . Phys. Rev. B 83, 245213 (2011).

    Article  Google Scholar 

  45. Ellis, J. K., Lucero, M. J. & Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99, 261908 (2011).

    Article  Google Scholar 

  46. Jiang, T. et al. Valley and band structure engineering of folded MoS2 bilayers. Nature Nanotech. 9, 825–829 (2014).

    Article  CAS  Google Scholar 

  47. Zahid, F., Liu, L., Zhu, Y., Wang, J. & Guo, H. A generic tight-binding model for monolayer, bilayer and bulk MoS2 . AIP Adv. 3, 052111 (2013).

    Article  Google Scholar 

  48. Brumme, T., Calandra, M. & Mauri, F. First-principles theory of field-effect doping in transition-metal dichalcogenides: structural properties, electronic structure, Hall coefficient, and electrical conductivity. Phys. Rev. B 91, 155436 (2015).

    Article  Google Scholar 

  49. Schrieffer, J. R. Theory of Superconductivity (Advanced Books, 1999).

    Google Scholar 

  50. Morpurgo, A. F. Spintronics: gate control of spin–valley coupling. Nature Phys. 9, 532–533 (2013).

    Article  CAS  Google Scholar 

  51. Yuan, H. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013).

    Article  CAS  Google Scholar 

  52. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2 . Science. 350, 1353–1357 (2015).

    Article  CAS  Google Scholar 

  53. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  54. Qing-Yan, W. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 37402 (2012).

    Article  Google Scholar 

  55. Ge, J.-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 . Nature Mater. 14, 285–289 (2015).

    Article  CAS  Google Scholar 

  56. Zhang, T. et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nature Phys. 6, 104–108 (2010).

    Article  CAS  Google Scholar 

  57. Sekihara, T., Masutomi, R. & Okamoto, T. Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field. Phys. Rev. Lett. 111, 057005 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Ferreira for technical help and T. Giamarchi, F. Mauri and M. Calandra for useful discussions. The authors acknowledge the Swiss National Science Foundation (SNF) and the EU Graphene Flagship Project for financial support.

Author information

Authors and Affiliations

Authors

Contributions

D.C. fabricated the majority of the devices and performed most of the measurements, with assistance and supervision from S.J. D.C. and S.J. analysed the data. H.B. provided the MoS2 crystals. A.F.M. proposed the experiment and supervised the research. All authors discussed the results and contributed to their interpretation. D.C., S.J. and A.F.M. wrote the manuscript.

Corresponding author

Correspondence to Alberto F. Morpurgo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costanzo, D., Jo, S., Berger, H. et al. Gate-induced superconductivity in atomically thin MoS2 crystals. Nature Nanotech 11, 339–344 (2016). https://doi.org/10.1038/nnano.2015.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing