Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves

Abstract

Guiding light at the nanoscale is usually accomplished using surface plasmons1,2,3,4,5,6,7,8,9,10,11,12. However, plasmons propagating at the surface of a metal sustain propagation losses. A different type of surface excitation is the Dyakonov surface wave. These waves, which exist in lossless media, were predicted more than two decades ago13 but observed only recently14. Dyakonov surface waves exist when at least one of the two media forming the surface exhibits a suitable anisotropy of refractive indexes. Although propagating only within a narrow range of directions15, these waves can be used to create modes supported by ultrathin films that confine light efficiently within film thicknesses well below the cutoff thickness required in standard waveguides. Here, we show that 10 nm and 20 nm dielectric nanosheets of aluminium oxide clad between an anisotropic crystal (lithium triborate) and different liquids support Dyakonov-like modes. The direction of light propagation can be controlled by modulating the refractive index of the cladding. The possibility of guiding light in nanometre-thick films with no losses and high directionality makes Dyakonov wave modes attractive for planar photonic devices in schemes similar to those currently employing long-range plasmons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanosheet structure supporting guided modes enabled by Dyakonov surface waves (GEDS).
Figure 2: Existence domain and localization of GEDS as a function of nanosheet thickness.
Figure 3: Calculated and observed polarization-conversion reflection spectra.
Figure 4: Measured cutoff angle θmax for different liquids and nanosheet thicknesses.
Figure 5: Steering of GEDS by varying the cladding refractive index.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  2. Maier, S. A. & Atwater, H. A. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).

    Article  Google Scholar 

  3. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  CAS  Google Scholar 

  4. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

    Article  CAS  Google Scholar 

  5. Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photon. 1, 484–588 (2009).

    Article  CAS  Google Scholar 

  6. Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

    Article  CAS  Google Scholar 

  7. Grandidier, J. et al. Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy. Phys. Rev. B 78, 245419 (2008).

    Article  Google Scholar 

  8. MacDonald, K. F. & Zheludev, N. I. Active plasmonics: current status. Laser Photon. Rev. 4, 562–567 (2010).

    Article  CAS  Google Scholar 

  9. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

    Article  CAS  Google Scholar 

  10. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    Article  CAS  Google Scholar 

  11. Choo, H. et al. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photon. 6, 838–844 (2012).

    Article  CAS  Google Scholar 

  12. Han, Z. & Bozhevolnyi, S. I. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 76, 016402 (2013).

    Article  Google Scholar 

  13. Dyakonov, M. I. New type of electromagnetic wave propagating at an interface. Sov. Phys. JETP 67, 714–716 (1988).

    Google Scholar 

  14. Takayama, O., Crasovan, L-C., Artigas, D. & Torner, L. Observation of Dyakonov surface waves. Phys. Rev. Lett. 102, 043903 (2009).

    Article  Google Scholar 

  15. Takayama, O. et al. Dyakonov surface waves: a review. Electromagnetics 28, 126–145 (2008).

    Article  Google Scholar 

  16. Polo, J. A. Jr & Lakhtakia, A. Surface electromagnetic waves: a review. Laser Photon. Rev. 5, 234–246 (2011).

    Article  Google Scholar 

  17. Walker, D. B., Glytsis, E. N. & Gaylord, T. K. Surface mode at isotropic–uniaxial and isotropic–biaxial interfaces. J. Opt. Soc. Am. A 15, 248–260 (1998).

    Article  Google Scholar 

  18. Torner, L., Torres, J. P., Ojeda, C. & Mihalache, D. Hybrid waves guided by ultrathin films. J. Lightwave Technol. 13, 2027–2033 (1995).

    Article  Google Scholar 

  19. Bass, M. et al. Handbook of Optics 3rd edn, Vol. 4 (McGraw-Hill, 2009).

  20. Hodgkinson, I. J., Kassam, S. & Wu, Q. H. Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal–crystal interface. J. Comput. Phys. 133, 75–83 (1997).

    Article  Google Scholar 

  21. Nikitin, A. Y., Artigas, D., Torner, L., García-Vidal, F. J. & Martín-Moreno, L. Polarization conversion spectroscopy of hybrid modes. Opt. Lett. 34, 3911–3913 (2009).

    Article  Google Scholar 

  22. Kavokin, A. V., Shelykh, I. A. & Malpuech, G. Lossless interface modes at the boundary between two periodic dielectric structures. Phys. Rev. B 72, 233102 (2005).

    Article  Google Scholar 

  23. Artigas, D. & Torner, L. Dyakonov surface waves in photonic metamaterials. Phys. Rev. Lett. 94, 013901 (2005).

    Article  Google Scholar 

  24. Takayama, O., Artigas, D. & Torner, L. Practical dyakonons. Opt. Lett. 37, 4311–4313 (2012).

    Article  Google Scholar 

  25. Pulsifer, D. P., Faryad, M. & Lakhtakia, A. Observation of the Dyakonov–Tamm wave. Phys. Rev. Lett. 111, 243902 (2013).

    Article  Google Scholar 

  26. Krishnamoorthy, H. N. S., Jacob, Z., Narimonov, E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).

    Article  CAS  Google Scholar 

  27. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  28. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    Article  CAS  Google Scholar 

  29. Cheng, J. & Steckl A. J. Focused ion beam fabricated microgratings for integrated optics applications. IEEE J. Quantum Electron. 8, 1323–1330 (2002).

    Article  CAS  Google Scholar 

  30. Chaganti, K., Salakhutdinov, I., Avrutsky, I. & Auner, G. W. Sub-micron grating fabrication on hafnium oxide thin-film waveguides with focused ion-beam milling. Opt. Express 14, 1505–1511 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Generalitat de Catalunya (grant no. 2009-SGR-159), by the Ministry of Science and Innovation, Government of Spain (grant no. FIS2009-09928), the Severo Ochoa programme LaserLab Europe and by Fundacio Privada Cellex Barcelona. The authors thank D. Ghosh, V. Pruneri and J. Osmond for assistance in the preparation and characterization of the Al2O3 nanosheets, A. Singh and N. van Hulst for assistance in the fabrication of the grating coupler, and R. Quidant for discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work.

Corresponding author

Correspondence to David Artigas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takayama, O., Artigas, D. & Torner, L. Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves. Nature Nanotech 9, 419–424 (2014). https://doi.org/10.1038/nnano.2014.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing