Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals

Abstract

Applications of semiconductor nanocrystals such as biomarkers and light-emitting optoelectronic devices require that their fluorescence quantum yield be close to 100%. However, such quantum yields have not been obtained yet, in part, because non-radiative Auger recombination in charged nanocrystals could not be suppressed completely. Here, we synthesize colloidal core/thick-shell CdSe/CdS nanocrystals with 100% quantum yield and completely quenched Auger processes at low temperatures, although the nanocrystals are negatively photocharged. Single particle and ensemble spectroscopy in the temperature range 30–300 K shows that the non-radiative Auger recombination is thermally activated around 200 K. Experimental results are well described by a model suggesting a temperature-dependent delocalization of one of the trion electrons from the CdSe core and enhanced Auger recombination at the abrupt CdS outer surface. These results point to a route for the design of core/shell structures with 100% quantum yield at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images of nanocrystals and single-nanocrystal fluorescent traces.
Figure 2: Single nanocrystal lifetime evolution versus temperature, and charge determination.
Figure 3: Model of temperature-dependent electron localization.

Similar content being viewed by others

References

  1. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  2. Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Article  CAS  Google Scholar 

  3. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  CAS  Google Scholar 

  4. Derougemont, F., Frey, R., Roussignol, P., Ricard, D. & Flytzanis, C. Evidence of strong Auger recombination in semiconductor-doped glasses. Appl. Phys. Lett. 50, 1619–1621 (1987).

    Article  CAS  Google Scholar 

  5. Chepic, D. I. et al. Auger ionization of semiconductor quantum drops in a glass matrix. J. Lumin. 47, 113–127 (1990).

    Article  Google Scholar 

  6. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article  CAS  Google Scholar 

  7. Shen, Y. C. et al. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101 (2007).

    Article  Google Scholar 

  8. Fuchs, G., Schiedel, C., Hangleiter, A., Harle, V. & Scholz, F. Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum wells. Appl. Phys. Lett. 62, 396–398 (1993).

    Article  CAS  Google Scholar 

  9. Frantsuzov, P. A. & Marcus, R. A. Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys. Rev. B 72, 155321 (2005).

    Article  Google Scholar 

  10. Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).

    Article  CAS  Google Scholar 

  11. Rosen, S., Schwartz, O. & Oron, D. Transient fluorescence of the off state in blinking CdSe/CdS/ZnS semiconductor nanocrystals is not governed by Auger recombination. Phys. Rev. Lett. 104, 157404 (2010).

    Article  Google Scholar 

  12. Cichos, F., von Borczyskowski, C. & Orrit, M. Power-law intermittency of single emitters. Curr. Opin. Colloid Interface Sci. 12, 272–284 (2007).

    Article  CAS  Google Scholar 

  13. Frantsuzov, P., Kuno, M., Janko, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nature Phys. 4, 519–522 (2008).

    Article  Google Scholar 

  14. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: a universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).

    Article  CAS  Google Scholar 

  15. Wang, X. et al. Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009).

    Article  CAS  Google Scholar 

  16. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nature Mater. 7, 659–664 (2008).

    Article  CAS  Google Scholar 

  17. Chen, Y. et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    Article  CAS  Google Scholar 

  18. Spinicelli, P. et al. Bright and grey states in CdSe–CdS nanocrystals exhibiting strongly reduced blinking. Phys. Rev. Lett. 102, 136801 (2009).

    Article  CAS  Google Scholar 

  19. Gomez, D. E., van Embden, J., Mulvaney, P., Fernee, M. J. & Rubinsztein-Dunlop, H. Exciton–trion transitions in single CdSe–CdS core–shell nanocrystals. ACS Nano 3, 2281–2287 (2009).

    Article  CAS  Google Scholar 

  20. Raino, G. et al. Probing the wave function delocalization in CdSe/CdS dot-in-rod nanocrystals by time- and temperature-resolved spectroscopy. ACS Nano 5, 4031–4036 (2011).

    Article  CAS  Google Scholar 

  21. Brokmann, X., Coolen, L., Dahan, M. & Hermier, J. P. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett. 93, 107403 (2004).

    Article  CAS  Google Scholar 

  22. Kim, S., Fisher, B., Eisler, H. J. & Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003).

    Article  CAS  Google Scholar 

  23. Muller, J. et al. Air-induced fluorescence bursts from single semiconductor nanocrystals. Appl. Phys. Lett. 85, 381–383 (2004).

    Article  CAS  Google Scholar 

  24. Brovelli, S. et al. Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nature Commun. 2, 280 (2011).

    Article  CAS  Google Scholar 

  25. Donega, C. D., Bode, M. & Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 74, 085320 (2006).

    Article  Google Scholar 

  26. Nirmal, M. et al. Observation of the dark exciton in CdSe quantum dots. Phys. Rev. Lett. 75, 3728–3731 (1995).

    Article  CAS  Google Scholar 

  27. Louyer, Y., Biadala, L., Tamarat, P. & Lounis, B. Spectroscopy of neutral and charged exciton states in single CdSe/ZnS nanocrystals. Appl. Phys. Lett. 96, 203111 (2010).

    Article  Google Scholar 

  28. Galland, C. et al. Lifetime blinking in nonblinking nanocrystal quantum dots. Nature Commun. 3, 908 (2012).

    Article  Google Scholar 

  29. Bartsch, G. et al. Positively versus negatively charged excitons: a high magnetic field study of CdTe/CdMgTe quantum wells. Phys. Rev. B 83, 235317 (2011).

    Article  Google Scholar 

  30. Shabaev, A., Rodina, A. & Efros, A. L. Fine structure of the band edge excitons and trions in CdSe/CdS core/shell nanocrystals. Phys. Rev. B 86, 205311 (2012).

    Article  Google Scholar 

  31. Nethercot, A. H. Prediction of Fermi energies and photoelectric thresholds based on electronegativity concepts. Phys. Rev. Lett. 33, 1088–1091 (1974).

    Article  CAS  Google Scholar 

  32. Steiner, D. et al. Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett. 8, 2954–2958 (2008).

    Article  CAS  Google Scholar 

  33. Pandey, A. & Guyot-Sionnest, P. Intraband spectroscopy and band offsets of colloidal IIVI core/shell structures. J. Chem. Phys. 127, 104710 (2007).

    Article  Google Scholar 

  34. Peng, X. G., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997).

    Article  CAS  Google Scholar 

  35. Sitt, A., Della Sala, F., Menagen, G. & Banin, U. Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. Nano Lett. 9, 3470–3476 (2009).

    Article  CAS  Google Scholar 

  36. Smith, A. M., Mohs, A. M. & Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nature Nanotech. 4, 56–63 (2009).

    Article  CAS  Google Scholar 

  37. Mauser, C. et al. Spatio-temporal dynamics of coupled electrons and holes in nanosize CdSe–CdS semiconductor tetrapods. Phys. Rev. B 82, 081306 (2010).

    Article  Google Scholar 

  38. Efros, A. L. Luminescence polarization of CdSe microcrystals. Phys. Rev. B 46, 7448–7458 (1992).

    Article  CAS  Google Scholar 

  39. Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2010).

    Article  CAS  Google Scholar 

  40. Mahler, B., Lequeux, N. & Dubertret, B. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J. Am. Chem. Soc. 132, 953–959 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Al.L.E. acknowledges financial support from the Office of Naval Research and Alexander-von-Humboldt Foundation. A.S. acknowledges support from the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center founded by the Office of Basic Energy Sciences (OBES), Office of Science (OS), US Department of Energy (US DOE). C.J., B.D. and J-P.H. acknowledge support from the Agence Nationale de la Recherche, and the Région Ile-de-France. B.D. acknowledges support from the ESPCI and J-P.H acknowledges support from the Institut Universitaire de France. F.L. and D.R.Y. acknowledge support from the EU Seventh Framework Programme (grant no. 237252, Spin-optronics). The authors thank T. Pons, N. Lequeux, E. Cassette, M. Tessier, I. Maksimovic, N. Bergeal and R. Lobo for stimulating discussions and advice. The authors are also grateful to Xiangzhen Xu for expert help with TEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

C.J. and B.M. synthesized the nanocrystals. C.J. and G.C. performed the single particle measurements under the guidance of B.D., S.B., X.Q. and J-P.H. L.B and F.L. performed the measurements in magnetic fields under the guidance of D.Y. and M.B. Al.L.E., A.R. and A.S. developed the theoretical model. C.J., B.D., J-P.H., L.B., D.Y. and Al.L.E. analysed and interpreted the data. C.J., B.D. and Al.L.E. wrote the manuscript with the assistance of all other co-authors.

Corresponding authors

Correspondence to B. Dubertret, Al. L. Efros or J-P. Hermier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2715 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javaux, C., Mahler, B., Dubertret, B. et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nature Nanotech 8, 206–212 (2013). https://doi.org/10.1038/nnano.2012.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing