Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complex self-assembled patterns using sparse commensurate templates with locally varying motifs

Abstract

Templated self-assembly of block copolymer thin films can generate periodic arrays of microdomains within a sparse template, or complex patterns using 1:1 templates1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. However, arbitrary pattern generation directed by sparse templates remains elusive. Here, we show that an array of carefully spaced and shaped posts, prepared by electron-beam patterning of an inorganic resist, can be used to template complex patterns in a cylindrical-morphology block copolymer. We use two distinct methods: making the post spacing commensurate with the equilibrium periodicity of the polymer, which controls the orientation of the linear features, and making local changes to the shape or distribution of the posts, which direct the formation of bends, junctions and other aperiodic features in specific locations. The first of these methods permits linear patterns to be directed by a sparse template that occupies only a few percent of the area of the final self-assembled pattern, while the second method can be used to selectively and locally template complex linear patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Commensurate templating of a cylindrical morphology PS-PDMS block copolymer.
Figure 2: Modelling of block copolymer microdomain morphologies.
Figure 3: Demonstration of local programming of the block copolymer arrangement by changing the motif of the template lattice.
Figure 4: Templated bends and junctions.

Similar content being viewed by others

References

  1. Bang, J., Jeong, U., Ryu, D. Y., Russell, T. P. & Hawker, C. J. Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. Adv. Mater. 21, 1–24 (2009).

    Google Scholar 

  2. Stoykovich, M. P. et al. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308, 1442–1446 (2005).

    Article  CAS  Google Scholar 

  3. Bita, I. et al. Graphoepitaxy of self-assembled block copolymers on 2D periodic patterned templates. Science 321, 939–943 (2008).

    Article  CAS  Google Scholar 

  4. Cheng, J. Y., Rettner, C. T., Sanders, D. P., Kim, H. C. & Hinsberg, W. D. Dense self-assembly on sparse chemical patterns: rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 20, 3155–3158 (2008).

    Article  CAS  Google Scholar 

  5. Ruiz, R. et al. Density multiplication and improved lithography by directed block copolymer assembly. Science 321, 936–939 (2008).

    Article  CAS  Google Scholar 

  6. Park, S. et al. Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order. Science 323, 1030–1033 (2009).

    Article  CAS  Google Scholar 

  7. Kim, S. O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).

    Article  CAS  Google Scholar 

  8. Wilmes, G. M., Durkee, D. A., Balsara, N. P. & Liddle, J. A. Bending soft block copolymer nanostructures by lithographically directed assembly. Macromolecules 39, 2435–2437 (2006).

    Article  CAS  Google Scholar 

  9. Segalman, R. A., Hexemer, A. & Kramer, E. J. Edge effects on the order and freezing of a 2D array of block copolymer spheres. Phys. Rev. Lett. 91, 192101 (2003).

    Article  Google Scholar 

  10. Segalman, R. A., Yokoyama, H. & Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13, 1152–1155 (2001).

    Article  CAS  Google Scholar 

  11. Stoykovich, M. P. et al. Directed self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries. ACS Nano 1, 168–175 (2007).

    Article  CAS  Google Scholar 

  12. Sundrani, D., Darling, S. B. & Sibener, S. J. Guiding polymers to perfection: macroscopic alignment of nanoscale domains. Nano Lett. 4, 273–276 (2004).

    Article  CAS  Google Scholar 

  13. Black, C. T. & Bezencenet, O. Nanometer-scale pattern registration and alignment by directed diblock copolymer self-assembly. IEEE Trans. Nanotechnol. 3, 412–415 (2004).

    Article  Google Scholar 

  14. Cheng, J. Y., Mayes, A. M. & Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nature Mater. 3, 823–828 (2004).

    Article  CAS  Google Scholar 

  15. Park, S. M., Craig, G. S. W., La, Y. H., Solak, H. H. & Nealey, P. F. Square arrays of vertical cylinders of PS-b-PMMA on chemically nanopatterned surfaces. Macromolecules 40, 5084–5094 (2007).

    Article  CAS  Google Scholar 

  16. Bates, F. S. & Fredrickson, G. H. Block copolymer thermodynamics—theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990).

    Article  CAS  Google Scholar 

  17. Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).

    Article  CAS  Google Scholar 

  18. Tang, C. B., Lennon, E. M., Fredrickson, G. H., Kramer, E. J. & Hawker, C. J. Evolution of block copolymer lithography to highly ordered square arrays. Science 322, 429–432 (2008).

    Article  CAS  Google Scholar 

  19. Bang, J. et al. Defect-free nanoporous thin films from ABC triblock copolymers. J. Am. Chem. Soc. 128, 7622–7629 (2006).

    Article  CAS  Google Scholar 

  20. Milliron, D. J., Raoux, S., Shelby, R. & Jordan-Sweet, J. Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. Nature Mater. 6, 352–356 (2007).

    Article  CAS  Google Scholar 

  21. Cheng, J. Y., Jung, W. & Ross, C. A. Magnetic nanostructures from block copolymer lithography: hysteresis, thermal stability and magnetoresistance. Phys. Rev. B 70, 064417 (2004).

    Article  Google Scholar 

  22. Black, C. T. Self-aligned self assembly of multi-nanowire silicon field effect transistors. Appl. Phys. Lett. 87, 163116 (2005).

    Article  Google Scholar 

  23. Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).

    Article  CAS  Google Scholar 

  24. Naito, K., Hieda, H., Sakurai, M., Kamata, Y. & Asakawa, K. 2.5-inch disk patterned media prepared by an artificially assisted self-assembling method. IEEE Trans. Magn. 38, 1949–1951 (2002).

    Article  CAS  Google Scholar 

  25. Jung, Y. S., Jung, W., Tuller, H. L. & Ross, C. A. Nanowire conductive polymer gas sensor patterned using self-assembled block copolymer lithography. Nano Lett. 8, 3776–3780 (2008).

    Article  CAS  Google Scholar 

  26. Jung, Y. S. & Ross, C. A. Orientation-controlled self-assembled nanolithography using a polystyrene-polydimethylsiloxane block copolymer. Nano Lett. 7, 2046–2050 (2007).

    Article  CAS  Google Scholar 

  27. Jung, Y. S., Jung, W. & Ross, C. A. Nanofabricated concentric ring structures by templated self-assembly of a diblock copolymer. Nano Lett. 8, 2975–2981 (2008).

    Article  CAS  Google Scholar 

  28. Yang, J. K. W. & Berggren, K. K. Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography. J. Vac. Sci. Technol. B 25, 2025–2029 (2007).

    Article  CAS  Google Scholar 

  29. Fredrickson, G. H. The Equilibrium Theory of Inhomogeneous Polymers (Oxford Univ. Press, 2006).

    Google Scholar 

  30. Fredrickson, G. H., Ganesan, V. & Drolet, F. Field-theoretic computer simulation methods for polymers and complex fluids. Macromolecules 35, 16–39 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Semiconductor Research Corporation, the Singapore-MIT Alliance, the Office of Naval Research, and the Nanoelectronics Research Institute. J.K.W.Y. would like to acknowledge his fellowship from A*STAR Singapore. The Research Laboratory of Electronics Scanning-Electron-Beam Lithography Facility provided facilities for this work. The authors also thank M. Mondol and J. Daley for technical assistance and acknowledge helpful discussions with E.L. Thomas.

Author information

Authors and Affiliations

Authors

Contributions

J.K.W.Y., Y.-S.J., C.A.R. and K.K.B. conceived and designed the experiments. J.K.W.Y., Y.-S.J. and J.B.C. analysed the experimental results. Y.-S.J. developed the analytical model. R.A.M. and A.A.-K. performed numerical modelling. All authors contributed to discussions and writing of the paper.

Corresponding authors

Correspondence to C. A. Ross or Karl K. Berggren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Jung, Y., Chang, JB. et al. Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. Nature Nanotech 5, 256–260 (2010). https://doi.org/10.1038/nnano.2010.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing