Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GTP-independent rapid and slow endocytosis at a central synapse

Abstract

Vesicle endocytosis is essential for maintaining synaptic transmission. Its key step, membrane scission, is thought to be mediated by the GTPase dynamin in all forms of endocytosis at synapses. Our findings indicate that GTP-independent and probably dynamin-independent endocytosis co-exist with GTP- and dynamin-dependent endocytosis at the same synaptic nerve terminal, the calyx of Held, in rats. This previously undescribed form of endocytosis could be slow (tens of seconds) and/or rapid (a few seconds), similar to GTP- and dynamin-dependent endocytosis. It was activated during intense stimulation, whereas GTP- and dynamin-dependent endocytosis dominated during mild stimulation. These results establish a new model, in which vesicles are divided into two pools depending on their requirement for GTP and dynamin for retrieval. The GTP- and dynamin-dependent pool has higher priority for release and retrieval, but limited capacity, saturation of which leads to release and thus retrieval of GTP- and dynamin-independent vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GTP- and dynamin-dependent rapid and slow endocytosis.
Figure 2: Dynamin-independent rapid and slow endocytosis.
Figure 3: Recovered endocytosis is associated with exocytosis during repetitive stim10.
Figure 4: Recovered endocytosis is associated with exocytosis during repetitive stimuli that mimic action potential trains.
Figure 5: Uptake of FM1-43 during dynamin-independent endocytosis.
Figure 6: Further characterization of recovered endocytosis.
Figure 7: Recovery of endocytosis in the presence of GTPγS depends on nerve activity.
Figure 8: Repetitive stimulation depletes a pool of vesicles that rely on GTP hydrolysis for retrieval and triggers recovered endocytosis.

Similar content being viewed by others

References

  1. Fernandez-Alfonso, T. & Ryan, T.A. The efficiency of the synaptic vesicle cycle at central nervous system synapses. Trends Cell Biol. 16, 413–420 (2006).

    Article  CAS  Google Scholar 

  2. Koenig, J.H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844–3860 (1989).

    Article  CAS  Google Scholar 

  3. Chen, M.S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).

    Article  CAS  Google Scholar 

  4. van der Bliek, A.M. & Meyerowitz, E.M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).

    Article  CAS  Google Scholar 

  5. Damke, H., Baba, T., Warnock, D.E. & Schmid, S.L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994).

    Article  CAS  Google Scholar 

  6. Takei, K., McPherson, P.S., Schmid, S.L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-rS in nerve terminals. Nature 374, 186–190 (1995).

    Article  CAS  Google Scholar 

  7. Sweitzer, S.M. & Hinshaw, J.E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  Google Scholar 

  8. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001).

    Article  CAS  Google Scholar 

  9. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    Article  CAS  Google Scholar 

  10. Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259–263 (1997).

    Article  CAS  Google Scholar 

  11. Poskanzer, K.E., Marek, K.W., Sweeney, S.T. & Davis, G.W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003).

    Article  CAS  Google Scholar 

  12. Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 917–925 (1998).

    Article  CAS  Google Scholar 

  13. Yamashita, T., Hige, T. & Takahashi, T. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science 307, 124–127 (2005).

    Article  CAS  Google Scholar 

  14. Newton, A.J., Kirchhausen, T. & Murthy, V.N. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 103, 17955–17960 (2006).

    Article  CAS  Google Scholar 

  15. Jockusch, W.J., Praefcke, G.J., McMahon, H.T. & Lagnado, L. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46, 869–878 (2005).

    Article  CAS  Google Scholar 

  16. Artalejo, C.R., Elhamdani, A. & Palfrey, H.C. Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2–mediated slow endocytosis in chromaffin cells. Proc. Natl. Acad. Sci. USA 99, 6358–6363 (2002).

    Article  CAS  Google Scholar 

  17. Artalejo, C.R., Henley, J.R., McNiven, M.A. & Palfrey, H.C. Rapic endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP and dynamin, but not clathrin. Proc. Natl. Acad. Sci. USA 92, 8328–8332 (1995).

    Article  CAS  Google Scholar 

  18. Dautry-Varsat, A. Clathrin-independent endocytosis. in Endocytosis (ed. Marsh, M.) 26–57 (Oxford University Press, Oxford, 2001).

    Google Scholar 

  19. Damke, H., Baba, T., van der Bliek, A.M. & Schmid, S.L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80 (1995).

    Article  CAS  Google Scholar 

  20. Kirkham, M. & Parton, R.G. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta 1746, 349–363 (2005).

    Article  CAS  Google Scholar 

  21. Wu, W., Xu, J., Wu, X.S. & Wu, L.G. Activity-dependent acceleration of endocytosis at a central synapse. J. Neurosci. 25, 11676–11683 (2005).

    Article  CAS  Google Scholar 

  22. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    Article  CAS  Google Scholar 

  23. Pang, Z.P., Sun, J., Rizo, J., Maximov, A. & Sudhof, T.C. Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J. 25, 2039–2050 (2006).

    Article  CAS  Google Scholar 

  24. De Camilli, P., Slepnev, V.I., Shupliakov, O. & Brodin, L. Synaptic vesicle endocytosis. in Synapses (eds. Cowan, W.M., Sudhof, T.C. & Stevens, C.F.) 217–274 (The Johns Hopkins University Press, Baltimore and London, 2001).

    Google Scholar 

  25. Betz, W.J. & Angleson, J.K. The synaptic vesicle cycle. Annu. Rev. Physiol. 60, 347–363 (1998).

    Article  CAS  Google Scholar 

  26. Holt, M., Cooke, A., Wu, M.M. & Lagnado, L. Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. J. Neurosci. 23, 1329–1339 (2003).

    Article  CAS  Google Scholar 

  27. He, L., Wu, X.S., Mohan, R. & Wu, L.G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444, 102–105 (2006).

    Article  CAS  Google Scholar 

  28. Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002).

    Article  Google Scholar 

  29. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  Google Scholar 

  30. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  CAS  Google Scholar 

  31. Haas, A.K., Fuchs, E., Kopajtich, R. & Barr, F.A.A. GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat. Cell Biol. 7, 887–893 (2005).

    Article  CAS  Google Scholar 

  32. Ferguson, S.M. et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316, 570–574 (2007).

    Article  CAS  Google Scholar 

  33. Von Gersdorff, H. & Borst, J.G.G. Short-term plasticity at the calyx of Held. Nat. Rev. Neurosci. 3, 53–64 (2002).

    Article  CAS  Google Scholar 

  34. Oertel, D. The role of timing in the brain stem auditory nuclei of vertebrates. Annu. Rev. Physiol. 61, 497–519 (1999).

    Article  CAS  Google Scholar 

  35. Boraud, T., Bezard, E., Bioulac, B. & Gross, C.E. From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog. Neurobiol. 66, 265–283 (2002).

    Article  Google Scholar 

  36. Bear, M.F. Bidirectional synaptic plasticity: from theory to reality. Phil. Trans. R. Soc. Lond. B 358, 649–655 (2003).

    Article  Google Scholar 

  37. de Lange, R.P., de Roos, A.D. & Borst, J.G. Two modes of vesicle recycling in the rat calyx of Held. J. Neurosci. 23, 10164–10173 (2003).

    Article  CAS  Google Scholar 

  38. Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69 (2005).

    Article  CAS  Google Scholar 

  39. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat. Cell Biol. 7, 570–580 (2005).

    Article  CAS  Google Scholar 

  40. Yang, J.S. et al. Key components of the fission machinery are interchangeable. Nat. Cell Biol. 8, 1376–1382 (2006).

    Article  CAS  Google Scholar 

  41. Praefcke, G.J. & McMahon, H.T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat. Rev. Mol. Cell Biol. 5, 133–147 (2004).

    Article  CAS  Google Scholar 

  42. Heidelberger, R. ATP is required at an early step in compensatory endocytosis in synaptic terminals. J. Neurosci. 21, 6467–6474 (2001).

    Article  CAS  Google Scholar 

  43. Graham, M.E., O'Callaghan, D.W., McMahon, H.T. & Burgoyne, R.D. Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc. Natl. Acad. Sci. USA 99, 7124–7129 (2002).

    Article  CAS  Google Scholar 

  44. Zhang, C. et al. Calcium- and dynamin-independent endocytosis in dorsal root ganglion neurons. Neuron 42, 225–236 (2004).

    Article  CAS  Google Scholar 

  45. Sun, J.Y. et al. Capacitance measurements at the calyx of Held in the medial nucleus of the trapezoid body. J. Neurosci. Methods 134, 121–131 (2004).

    Article  Google Scholar 

  46. Wong, A.Y., Graham, B.P., Billups, B. & Forsythe, I.D. Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. J. Neurosci. 23, 4868–4877 (2003).

    Article  CAS  Google Scholar 

  47. Xu, J. & Wu, L.G. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46, 633–645 (2005).

    Article  CAS  Google Scholar 

  48. Kay, A.R. et al. Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron 24, 809–817 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Neurological Disorders and Stroke Intramural Research Program.

Author information

Authors and Affiliations

Authors

Contributions

J.X. and W.W. discovered the phenomenon. J.X. was involved in every aspect of the study, including experimental design, electrophysiology, FM dye imaging and data analysis. B.M. assisted in several experiments and designed the experiment for Supplementary Figure 4. W.W. carried out the experiments for Supplementary Figure 5. D.N. made the PH domain. L.B. performed the immunostaining. L.-G.W. supervised the project. L.-G.W and J.X. wrote the manuscript, with assistance from B.M.

Corresponding author

Correspondence to Ling-Gang Wu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Data (PDF 4954 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., McNeil, B., Wu, W. et al. GTP-independent rapid and slow endocytosis at a central synapse. Nat Neurosci 11, 45–53 (2008). https://doi.org/10.1038/nn2021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing