Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans

Abstract

Dendrites often adopt complex branched structures. The development and organization of these arbors fundamentally determine the potential input and connectivity of a given neuron. The cell-surface receptors that control dendritic branching remain poorly understood. We found that, in Caenorhabditis elegans, a previously uncharacterized transmembrane protein containing extracellular leucine-rich repeat (LRR) domains, which we named DMA-1 (dendrite-morphogenesis-abnormal), promotes dendrite branching and growth. Sustained expression of dma-1 was found only in the elaborately branched sensory neurons PVD and FLP. Genetic analysis revealed that the loss of dma-1 resulted in much reduced dendritic arbors, whereas overexpression of dma-1 resulted in excessive branching. Forced expression of dma-1 in neurons with simple dendrites was sufficient to promote ectopic branching. Worms lacking dma-1 were defective in sensing harsh touch. DMA-1 is the first transmembrane LRR protein to be implicated in dendritic branching and expands the breadth of roles of LRR receptors in nervous system development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DMA-1 is expressed in highly branched neurons.
Figure 2: dma-1 positively regulates PVD branching.
Figure 3: DMA-1 functions cell autonomously.
Figure 4: dma-1 also regulates FLP branching.
Figure 5: dma-1 overexpression causes excessive branching.
Figure 6: Expression of dma-1 in morphologically simple neurons can induce ectopic branching.
Figure 7: dma-1 mutants display defects in response to harsh touch.

Similar content being viewed by others

References

  1. Masland, R.H. Neuronal cell types. Curr. Biol. 14, R497–R500 (2004).

    Article  CAS  Google Scholar 

  2. Ramon y Cajal, S. Histology of the Nervous System of Man and Vertebrates (Oxford University Press, 1995).

  3. Wen, Q., Stepanyants, A., Elston, G.N., Grosberg, A.Y. & Chklovskii, D.B. Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proc. Natl. Acad. Sci. USA 106, 12536–12541 (2009).

    Article  CAS  Google Scholar 

  4. Aizawa, H. et al. Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303, 197–202 (2004).

    Article  CAS  Google Scholar 

  5. Gaudillière, B., Konishi, Y., de la Iglesia, N., Yao, G. & Bonni, A.A. CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41, 229–241 (2004).

    Article  Google Scholar 

  6. Morita, A. et al. Regulation of dendritic branching and spine maturation by semaphorin3A-Fyn signaling. J. Neurosci. 26, 2971–2980 (2006).

    Article  CAS  Google Scholar 

  7. Grueber, W.B. et al. Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development 134, 55–64 (2007).

    Article  CAS  Google Scholar 

  8. Jan, Y.N. & Jan, L.Y. Branching out: mechanisms of dendritic arborization. Nat. Rev. Neurosci. 11, 316–328 (2010).

    Article  CAS  Google Scholar 

  9. Grueber, W.B., Jan, L.Y. & Jan, Y.N. Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112, 805–818 (2003).

    Article  CAS  Google Scholar 

  10. Sugimura, K., Satoh, D., Estes, P., Crews, S. & Uemura, T. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron 43, 809–822 (2004).

    Article  CAS  Google Scholar 

  11. Satoh, D. et al. Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nat. Cell Biol. 10, 1164–1171 (2008).

    Article  CAS  Google Scholar 

  12. Zheng, Y. et al. Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat. Cell Biol. 10, 1172–1180 (2008).

    Article  CAS  Google Scholar 

  13. Sweeney, N.T., Brenman, J.E., Jan, Y.N. & Gao, F.B. The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr. Biol. 16, 1006–1011 (2006).

    Article  CAS  Google Scholar 

  14. Ye, B. et al. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130, 717–729 (2007).

    Article  CAS  Google Scholar 

  15. Jaworski, J., Spangler, S., Seeburg, D.P., Hoogenraad, C.C. & Sheng, M. Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J. Neurosci. 25, 11300–11312 (2005).

    Article  CAS  Google Scholar 

  16. Emoto, K. et al. Control of dendritic branching and tiling by the Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons. Cell 119, 245–256 (2004).

    Article  CAS  Google Scholar 

  17. Ye, B. et al. Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr. Biol. 14, 314–321 (2004).

    Article  CAS  Google Scholar 

  18. Albeg, A. et al. C. elegans multi-dendritic sensory neurons: morphology and function. Mol. Cell Neurosci. 46, 308–317 (2010).

    Article  Google Scholar 

  19. Smith, C.J. et al. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev. Biol. 345, 18–33 (2010).

    Article  CAS  Google Scholar 

  20. Shen, K. & Cowan, C.W. Guidance molecules in synapse formation and plasticity. Cold Spring Harb. Perspect. Biol. 2, a001842 (2010).

    Article  Google Scholar 

  21. Shapiro, L., Love, J. & Colman, D.R. Adhesion molecules in the nervous system: structural insights into function and diversity. Annu. Rev. Neurosci. 30, 451–474 (2007).

    Article  CAS  Google Scholar 

  22. Dolan, J. et al. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics 8, 320 (2007).

    Article  Google Scholar 

  23. Chen, Y., Aulia, S., Li, L. & Tang, B.L. AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Brain Res. Rev. 51, 265–274 (2006).

    Article  CAS  Google Scholar 

  24. de Wit, J. et al. LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64, 799–806 (2009).

    Article  CAS  Google Scholar 

  25. Hong, W. et al. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nat. Neurosci. 12, 1542–1550 (2009).

    Article  CAS  Google Scholar 

  26. Ko, J., Fuccillo, M.V., Malenka, R.C. & Sudhof, T.C. LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64, 791–798 (2009).

    Article  CAS  Google Scholar 

  27. Linhoff, M.W. et al. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61, 734–749 (2009).

    Article  CAS  Google Scholar 

  28. Tursun, B., Cochella, L., Carrera, I. & Hobert, O. A toolkit and robust pipeline for the generation of fosmid-based reporter genes in C. elegans. PLoS ONE 4, e4625 (2009).

    Article  Google Scholar 

  29. Oren-Suissa, M., Hall, D.H., Treinin, M., Shemer, G. & Podbilewicz, B. The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science 328, 1285–1288 (2010).

    Article  CAS  Google Scholar 

  30. Tsalik, E.L. et al. LIM homeobox gene–dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev. Biol. 263, 81–102 (2003).

    Article  CAS  Google Scholar 

  31. Frøkjær-Jensen, C. et al. Targeted gene deletions in C. elegans using transposon excision. Nat. Methods 7, 451–453 (2010).

    Article  Google Scholar 

  32. Way, J.C. & Chalfie, M. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev. 3, 1823–1833 (1989).

    Article  CAS  Google Scholar 

  33. Li, W., Kang, L., Piggott, B.J., Feng, Z. & Xu, X.Z. The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans. Nat. Commun. 2, 315 (2011).

    Article  Google Scholar 

  34. Hutter, H., Ng, M.P. & Chen, N. GExplore: a web server for integrated queries of protein domains, gene expression and mutant phenotypes. BMC Genomics 10, 529 (2009).

    Article  Google Scholar 

  35. Hattori, D., Millard, S.S., Wojtowicz, W.M. & Zipursky, S.L. Dscam-mediated cell recognition regulates neural circuit formation. Annu. Rev. Cell Dev. Biol. 24, 597–620 (2008).

    Article  CAS  Google Scholar 

  36. Dimitrova, S., Reissaus, A. & Tavosanis, G. Slit and Robo regulate dendrite branching and elongation of space-filling neurons in Drosophila. Dev. Biol. 324, 18–30 (2008).

    Article  CAS  Google Scholar 

  37. McAllister, A.K., Katz, L.C. & Lo, D.C. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18, 767–778 (1997).

    Article  CAS  Google Scholar 

  38. Long, H., Ou, Y., Rao, Y. & van Meyel, D.J. Dendrite branching and self-avoidance are controlled by Turtle, a conserved IgSF protein in Drosophila. Development 136, 3475–3484 (2009).

    Article  CAS  Google Scholar 

  39. Bella, J., Hindle, K.L., McEwan, P.A. & Lovell, S.C. The leucine-rich repeat structure. Cell. Mol. Life Sci. 65, 2307–2333 (2008).

    Article  CAS  Google Scholar 

  40. Morlot, C. et al. Structural insights into the Slit-Robo complex. Proc. Natl. Acad. Sci. USA 104, 14923–14928 (2007).

    Article  CAS  Google Scholar 

  41. Schubert, W.D. et al. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111, 825–836 (2002).

    Article  CAS  Google Scholar 

  42. Caldwell, J.C., Fineberg, S.K. & Eberl, D.F. reduced ocelli encodes the leucine rich repeat protein Pray For Elves in Drosophila melanogaster. Fly (Austin) 1, 146–152 (2007).

    Article  Google Scholar 

  43. Oldenburg, K.R., Vo, K.T., Michaelis, S. & Paddon, C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451–452 (1997).

    Article  CAS  Google Scholar 

  44. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  Google Scholar 

  45. Wang, G.J. et al. GRLD-1 regulates cell-wide abundance of glutamate receptor through post-transcriptional regulation. Nat. Neurosci. 13, 1489–1495 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Gao and Y. Fu for technical assistance, C. Chen, K. Mizumoto, P. Chia and A. Hellman for critical reading of the manuscript, and the members of the Shen laboratory for helpful discussion. We would also like to thank the members of the Hobert and the Jorgensen laboratories for sharing plasmids and expertise regarding fosmid recombineering and MosDel. This work was supported by grants from the Howard Hughes Medical Institute and the US National Institutes of Health to K.S., and a postdoctoral fellowship from the Jane Coffin Childs Memorial Fund to O.W.L.

Author information

Authors and Affiliations

Authors

Contributions

O.W.L. conducted the experiments. K.S. supervised the project. O.W.L. and K.S. wrote the manuscript.

Corresponding author

Correspondence to Kang Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 1359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, O., Shen, K. The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans. Nat Neurosci 15, 57–63 (2012). https://doi.org/10.1038/nn.2978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing