Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction

Abstract

Quantitative trait locus mapping of chemical/inflammatory pain in the mouse identified the Avpr1a gene, which encodes the vasopressin-1A receptor (V1AR), as being responsible for strain-dependent pain sensitivity to formalin and capsaicin. A genetic association study in humans revealed the influence of a single nucleotide polymorphism (rs10877969) in AVPR1A on capsaicin pain levels, but only in male subjects reporting stress at the time of testing. The analgesic efficacy of the vasopressin analog desmopressin revealed a similar interaction between the drug and acute stress, as desmopressin inhibition of capsaicin pain was only observed in nonstressed subjects. Additional experiments in mice confirmed the male-specific interaction of V1AR and stress, leading to the conclusion that vasopressin activates endogenous analgesia mechanisms unless they have already been activated by stress. These findings represent, to the best of our knowledge, the first explicit demonstration of analgesic efficacy depending on the emotional state of the recipient, and illustrate the heuristic power of a bench-to-bedside-to-bench translational strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haplotype mapping localizes Nociq2 to a region of distal chromosome 10 upstream of Avpr1a.
Figure 2: Functional evidence for Avpr1a's involvement in pain.
Figure 3: Genetic association of a SNP in AVPR1A (rs10877969) to capsaicin pain ratings.
Figure 4: Evidence for the interaction of stress with desmopressin analgesia in 36 human subjects.
Figure 5: Interaction of AVP/V1AR-mediated analgesia and stress in male mice.

Similar content being viewed by others

References

  1. Donaldson, Z.R. & Young, L.J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322, 900–904 (2008).

    Article  CAS  Google Scholar 

  2. Caldwell, H.K., Lee, H.-J., Macbeth, A.H. & Young, W.S. III. Vasopressin: behavioral roles of an “original” neuropeptide. Prog. Neurobiol. 84, 1–24 (2008).

    Article  CAS  Google Scholar 

  3. Tribollet, E., Arsenijevic, Y. & Barberis, C. Vasopressin binding sites in the central nervous system: distribution and regulation. Prog. Brain Res. 119, 45–55 (1998).

    Article  CAS  Google Scholar 

  4. Young, L.J. & Wang, Z. The neurobiology of pair bonding. Nat. Neurosci. 7, 1048–1054 (2004).

    Article  CAS  Google Scholar 

  5. Thompson, R.R., George, K., Walton, J.C., Orr, S.P. & Benson, J. Sex-specific influences of vasopressin on human social communication. Proc. Natl. Acad. Sci. USA 103, 7889–7894 (2006).

    Article  CAS  Google Scholar 

  6. Walum, H. et al. Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc. Natl. Acad. Sci. USA 105, 14153–14156 (2008).

    Article  CAS  Google Scholar 

  7. Kemppainen, P., Pertovaara, A., Huopaniemi, T., Hamalainen, O. & Gronblad, M. Human pain thresholds after the application of lypressin, a vasopressin analogue. Pharmacol. Toxicol. 61, 16–19 (1987).

    Article  CAS  Google Scholar 

  8. Pohl, J. et al. Modulation of pain perception in man by a vasopressin analogue. Peptides 17, 641–647 (1996).

    Article  CAS  Google Scholar 

  9. Honda, K. & Takano, Y. New topics in vasopressin receptors and approach to novel drugs: involvement of vasopressin 1a and V1b receptors in nociceptive responses and morphine-induced effects. J. Pharmacol. Sci. 109, 38–43 (2009).

    Article  CAS  Google Scholar 

  10. Yang, J., Chen, J.-M., Liu, W.-Y., Snog, C.-Y. & Lin, B.-C. Through V2 not V1 receptor relating to endogenous opiate peptides, arginine vasopressin in periaqueductal gray regulates antinociception in the rat. Regul. Pept. 137, 156–161 (2006).

    Article  CAS  Google Scholar 

  11. Yang, J. et al. Through the central V2, not V1 receptors influencing the endogenous opiate peptide system, arginine vasopressin, not oxytocin in the hypothalamic paraventricular nucleus involves in the antinociception in the rat. Brain Res. 1069, 127–138 (2006).

    Article  CAS  Google Scholar 

  12. LaCroix-Fralish, M.L. & Mogil, J.S. Progress in genetic studies of pain and analgesia. Annu. Rev. Pharmacol. Toxicol. 49, 97–121 (2009).

    Article  CAS  Google Scholar 

  13. Mogil, J.S. et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc. Natl. Acad. Sci. USA 100, 4867–4872 (2003).

    Article  CAS  Google Scholar 

  14. Costigan, M. et al. Multiple chronic pain states are associated with a common amino acid–changing allele in KCNS1. Brain 133, 2519–2527 (2010).

    Article  Google Scholar 

  15. Tegeder, I. et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12, 1269–1277 (2006).

    Article  CAS  Google Scholar 

  16. Nissenbaum, J. et al. Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2. Genome Res. 20, 1180–1190 (2010).

    Article  CAS  Google Scholar 

  17. Mogil, J.S. et al. Heritability of nociception. I. Responses of eleven inbred mouse strains on twelve measures of nociception. Pain 80, 67–82 (1999).

    Article  CAS  Google Scholar 

  18. Lariviere, W.R. et al. Heritability of nociception. III. Genetic relationships among commonly used assays of nociception and hypersensitivity. Pain 97, 75–86 (2002).

    Article  Google Scholar 

  19. Mogil, J.S., Lichtensteiger, C.A. & Wilson, S.G. The effect of genotype on sensitivity to inflammatory nociception: characterization of resistant (A/J) and sensitive (C57BL/6) inbred mouse strains. Pain 76, 115–125 (1998).

    Article  CAS  Google Scholar 

  20. Wilson, S.G. et al. Identification of quantitative trait loci for chemical/inflammatory nociception in mice. Pain 96, 385–391 (2002).

    Article  CAS  Google Scholar 

  21. Nair, H.K. et al. Genomic loci and candidate genes underlying inflammatory nociception. Pain 152, 599–606 (2011).

    Article  CAS  Google Scholar 

  22. Fortin, A. et al. Recombinant congenic strains derived from A/J and C57BL/6J: a tool for genetic dissection of complex traits. Genomics 74, 21–35 (2001).

    Article  CAS  Google Scholar 

  23. Schorscher-Petcu, A. et al. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J. Neurosci. 30, 8274–8284 (2010).

    Article  CAS  Google Scholar 

  24. Balaban, C.D., McBurney, D.H. & Affeltranger, M.A. Three distinct categories of time course of pain produced by oral capsaicin. J. Pain 6, 315–322 (2005).

    Article  CAS  Google Scholar 

  25. Abbott, F.V., Franklin, K.B.J. & Connell, B. The stress of a novel environment reduces formalin pain: possible role of serotonin. Eur. J. Pharmacol. 126, 141–144 (1986).

    Article  CAS  Google Scholar 

  26. Fanselow, M.S. & Sigmundi, R.A. Species-specific danger signals, endogenous opioid analgesia, and defensive behavior. J. Exp. Psychol. Anim. Behav. Process. 12, 301–309 (1986).

    Article  CAS  Google Scholar 

  27. Gamble, G.D. & Milne, R.J. Repeated exposure to sham testing procedures reduces reflex withdrawal and hot-plate latencies: attenuation of tonic descending inhibition? Neurosci. Lett. 96, 312–317 (1989).

    Article  CAS  Google Scholar 

  28. Mogil, J.S., Sternberg, W.F., Balian, H., Liebeskind, J.C. & Sadowski, B. Opioid and non-opioid swim stress-induced analgesia: a parametric analysis in mice. Physiol. Behav. 59, 123–132 (1996).

    Article  CAS  Google Scholar 

  29. Mogil, J.S. & Belknap, J.K. Sex and genotype determine the selective activation of neurochemically-distinct mechanisms of swim stress-induced analgesia. Pharmacol. Biochem. Behav. 56, 61–66 (1997).

    Article  CAS  Google Scholar 

  30. Schmelz, M. Translating nociceptive processing into human pain models. Exp. Brain Res. 196, 173–178 (2009).

    Article  CAS  Google Scholar 

  31. Mogil, J.S. & Bailey, A.L. Sex and gender differences in pain and analgesia. Prog. Brain Res. 186, 141–157 (2010).

    PubMed  Google Scholar 

  32. Frazer, K.A. et al. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448, 1050–1055 (2007).

    Article  CAS  Google Scholar 

  33. Wong, G.T. Speed congenics: applications for transgenic and knock-out mouse strains. Neuropeptides 36, 230–236 (2002).

    Article  CAS  Google Scholar 

  34. Hu, S.B. et al. Vasopressin receptor 1a–mediated negative regulation of B cell receptor signaling. J. Neuroimmunol. 135, 72–81 (2003).

    Article  CAS  Google Scholar 

  35. Campbell, C.M. et al. Polymorphisms in the GTP cyclohydrolase gene (GCH1) are associated with ratings of capsaicin pain. Pain 141, 114–118 (2009).

    Article  CAS  Google Scholar 

  36. Shi, M.M., Myrand, S.P., Bleavins, M.R. & de la Iglesia, F.A. High-throughput genotyping for the detection of a single nucleotide polymorphism in NAD(P)H quinine oxidoreductase (DT diaphoresis) using TaqMan probes. Mol. Pathol. 52, 295–299 (1999).

    Article  CAS  Google Scholar 

  37. Purcell, S. et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  38. Lariviere, W.R., McBurney, D.H., Frot, M. & Balaban, C.D. Tonic, phasic, and integrator components of psychophysical responses to topical capsaicin account for differences of location and sex. J. Pain 6, 777–781 (2005).

    Article  CAS  Google Scholar 

  39. Stern, R.A. Visual Analog Mood Scale (Psychological Assessment Resources, 1997).

  40. Fillingim, R.B. et al. Morphine responses and experimental pain: sex differences in side effects and cardiovascular responses but not analgesia. J. Pain 6, 116–124 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by US National Institutes of Health grant NS41670 (R.B.F. and J.S.M.), CTSA grant RR02980 and the Louise and Alan Edwards Foundation (J.S.M.). We thank Pfeiffer of America for providing metered spray pumps.

Author information

Authors and Affiliations

Authors

Contributions

R.E.S., M.L.L.-F., S.G.S., J.R., J.-S.A., A.S.-P., K.M., J.C., R.A.B., J.B.M. and W.F.S. conducted the experiments. J.S.M., S.B.S., A.F., W.R.L., C.D.B., I.B. and R.B.F. performed data analyses. J.K.N., C.M.C., R.R.E., J.N. Campbell, M.R.W., I.B. and R.B.F. collected human phenotypic and genotypic data. J.N. Crawley provided transgenic mice and advice on their use. J.S.M., I.B. and R.B.F. supervised the project. J.S.M. wrote the manuscript.

Corresponding author

Correspondence to Jeffrey S Mogil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1 and 2 (PDF 835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogil, J., Sorge, R., LaCroix-Fralish, M. et al. Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction. Nat Neurosci 14, 1569–1573 (2011). https://doi.org/10.1038/nn.2941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing