Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1

Abstract

Ionotropic glutamate receptors principally mediate fast excitatory transmission in the brain. Among the three classes of ionotropic glutamate receptors, kainate receptors (KARs) have a unique brain distribution, which has been historically defined by 3H-radiolabeled kainate binding. Compared with recombinant KARs expressed in heterologous cells, synaptic KARs exhibit characteristically slow rise-time and decay kinetics. However, the mechanisms responsible for these distinct KAR properties remain unclear. We found that both the high-affinity binding pattern in the mouse brain and the channel properties of native KARs are determined by the KAR auxiliary subunit Neto1. Through modulation of agonist binding affinity and off-kinetics of KARs, but not trafficking of KARs, Neto1 determined both the KAR high-affinity binding pattern and the distinctively slow kinetics of postsynaptic KARs. By regulating KAR excitatory postsynaptic current kinetics, Neto1 can control synaptic temporal summation, spike generation and fidelity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hippocampus-abundant Neto1 interacts with KARs in vivo.
Figure 2: Neto 1 is highly expressed in the hippocampus CA3 pyramidal neurons and localizes at stratum lucidum.
Figure 3: Distinct distribution of high-affinity KARs is determined by Neto1 postsynaptically.
Figure 4: Neto1 modulates KAR function in the hippocampus.
Figure 5: The slow decay of KAR-mediated synaptic transmission is determined by Neto1.
Figure 6: Localization of KARs in the brain is independent of Neto1 and its PDZ-binding domain.
Figure 7: Neto1 modulates KAR-driven temporal summation and spike fidelity in CA3 pyramidal neurons.

Similar content being viewed by others

References

  1. Traynelis, S.F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  Google Scholar 

  2. Lerma, J. Kainate receptor physiology. Curr. Opin. Pharmacol. 6, 89–97 (2006).

    Article  CAS  Google Scholar 

  3. Contractor, A., Mulle, C. & Swanson, G.T. Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci. 34, 154–163 (2011).

    Article  CAS  Google Scholar 

  4. Pinheiro, P.S. & Mulle, C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat. Rev. Neurosci. 9, 423–436 (2008).

    Article  CAS  Google Scholar 

  5. Jane, D.E., Lodge, D. & Collingridge, G.L. Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology 56, 90–113 (2009).

    Article  CAS  Google Scholar 

  6. Foster, A.C., Mena, E.E., Monaghan, D.T. & Cotman, C.W. Synaptic localization of kainic acid binding sites. Nature 289, 73–75 (1981).

    Article  CAS  Google Scholar 

  7. Castillo, P.E., Malenka, R.C. & Nicoll, R.A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997).

    Article  CAS  Google Scholar 

  8. Vignes, M. & Collingridge, G.L. The synaptic activation of kainate receptors. Nature 388, 179–182 (1997).

    Article  CAS  Google Scholar 

  9. Kidd, F.L. & Isaac, J.T. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 400, 569–573 (1999).

    Article  CAS  Google Scholar 

  10. Kidd, F.L. & Isaac, J.T. Kinetics and activation of postsynaptic kainate receptors at thalamocortical synapses: role of glutamate clearance. J. Neurophysiol. 86, 1139–1148 (2001).

    Article  CAS  Google Scholar 

  11. Wu, L.J., Zhao, M.G., Toyoda, H., Ko, S.W. & Zhuo, M. Kainate receptor-mediated synaptic transmission in the adult anterior cingulate cortex. J. Neurophysiol. 94, 1805–1813 (2005).

    Article  CAS  Google Scholar 

  12. Li, H. & Rogawski, M.A. GluR5 kainate receptor mediated synaptic transmission in rat basolateral amygdala in vitro. Neuropharmacology 37, 1279–1286 (1998).

    Article  CAS  Google Scholar 

  13. Li, P. et al. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161–164 (1999).

    Article  CAS  Google Scholar 

  14. Bureau, I., Dieudonne, S., Coussen, F. & Mulle, C. Kainate receptor–mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc. Natl. Acad. Sci. USA 97, 6838–6843 (2000).

    Article  CAS  Google Scholar 

  15. Frerking, M., Malenka, R.C. & Nicoll, R.A. Synaptic activation of kainate receptors on hippocampal interneurons. Nat. Neurosci. 1, 479–486 (1998).

    Article  CAS  Google Scholar 

  16. Wondolowski, J. & Frerking, M. Subunit-dependent postsynaptic expression of kainate receptors on hippocampal interneurons in area CA1. J. Neurosci. 29, 563–574 (2009).

    Article  CAS  Google Scholar 

  17. Frerking, M. & Ohliger-Frerking, P. AMPA receptors and kainate receptors encode different features of afferent activity. J. Neurosci. 22, 7434–7443 (2002).

    Article  CAS  Google Scholar 

  18. Sachidhanandam, S., Blanchet, C., Jeantet, Y., Cho, Y.H. & Mulle, C. Kainate receptors act as conditional amplifiers of spike transmission at hippocampal mossy fiber synapses. J. Neurosci. 29, 5000–5008 (2009).

    Article  CAS  Google Scholar 

  19. Cunningham, M.O. et al. Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. USA 103, 5597–5601 (2006).

    Article  CAS  Google Scholar 

  20. Paternain, A.V., Rodríguez-Moreno, A., Villarroel, A. & Lerma, J. Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology 37, 1249–1259 (1998).

    Article  CAS  Google Scholar 

  21. Herb, A. et al. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775–785 (1992).

    Article  CAS  Google Scholar 

  22. Heckmann, M., Bufler, J., Franke, C. & Dudel, J. Kinetics of homomeric GluR6 glutamate receptor channels. Biophys. J. 71, 1743–1750 (1996).

    Article  CAS  Google Scholar 

  23. Schiffer, H.H., Swanson, G.T. & Heinemann, S.F. Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19, 1141–1146 (1997).

    Article  CAS  Google Scholar 

  24. Traynelis, S.F. & Wahl, P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. (Lond.) 503, 513–531 (1997).

    Article  CAS  Google Scholar 

  25. Swanson, G.T. & Heinemann, S.F. Heterogeneity of homomeric GluR5 kainate receptor desensitization expressed in HEK293 cells. J. Physiol. (Lond.) 513, 639–646 (1998).

    Article  CAS  Google Scholar 

  26. Cui, C. & Mayer, M.L. Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7. J. Neurosci. 19, 8281–8291 (1999).

    Article  CAS  Google Scholar 

  27. Mott, D.D., Rojas, A., Fisher, J.L., Dingledine, R.J. & Benveniste, M. Subunit-specific desensitization of heteromeric kainate receptors. J. Physiol. (Lond.) 588, 683–700 (2010).

    Article  CAS  Google Scholar 

  28. Erreger, K., Chen, P.E., Wyllie, D.J. & Traynelis, S.F. Glutamate receptor gating. Crit. Rev. Neurobiol. 16, 187–224 (2004).

    Article  CAS  Google Scholar 

  29. Swanson, G.T. et al. Differential activation of individual subunits in heteromeric kainate receptors. Neuron 34, 589–598 (2002).

    Article  CAS  Google Scholar 

  30. Bowie, D., Garcia, E.P., Marshall, J., Traynelis, S.F. & Lange, G.D. Allosteric regulation and spatial distribution of kainate receptors bound to ancillary proteins. J. Physiol. (Lond.) 547, 373–385 (2003).

    Article  CAS  Google Scholar 

  31. Garcia, E.P. et al. SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron 21, 727–739 (1998).

    Article  CAS  Google Scholar 

  32. Laezza, F. et al. KRIP6: a novel BTB/kelch protein regulating function of kainate receptors. Mol. Cell. Neurosci. 34, 539–550 (2007).

    Article  CAS  Google Scholar 

  33. Zhang, W. et al. A transmembrane accessory subunit that modulates kainate-type glutamate receptors. Neuron 61, 385–396 (2009).

    Article  CAS  Google Scholar 

  34. Coussen, F. et al. Recruitment of the kainate receptor subunit glutamate receptor 6 by cadherin/catenin complexes. J. Neurosci. 22, 6426–6436 (2002).

    Article  CAS  Google Scholar 

  35. Hirbec, H. et al. Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 37, 625–638 (2003).

    Article  CAS  Google Scholar 

  36. Ng, D. et al. Neto1 is a novel CUB-domain NMDA receptor–interacting protein required for synaptic plasticity and learning. PLoS Biol. 7, e41 (2009).

    PubMed  Google Scholar 

  37. Mulle, C. et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392, 601–605 (1998).

    Article  CAS  Google Scholar 

  38. Michishita, M. et al. Expression of Btcl2, a novel member of Btcl gene family, during development of the central nervous system. Brain Res. Dev. Brain Res. 153, 135–142 (2004).

    Article  CAS  Google Scholar 

  39. Berger, M. & Ben-Ari, Y. Autoradiographic visualization of [3H]kainic acid receptor subtypes in the rat hippocampus. Neurosci. Lett. 39, 237–242 (1983).

    Article  CAS  Google Scholar 

  40. Tomita, S., Fukata, M., Nicoll, R.A. & Bredt, D.S. Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science 303, 1508–1511 (2004).

    Article  CAS  Google Scholar 

  41. Kwon, H.B. & Castillo, P.E. Role of glutamate autoreceptors at hippocampal mossy fiber synapses. Neuron 60, 1082–1094 (2008).

    Article  CAS  Google Scholar 

  42. Salinas, G.D. et al. Actinfilin is a Cul3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway. J. Biol. Chem. 281, 40164–40173 (2006).

    Article  CAS  Google Scholar 

  43. Fernandes, H.B. et al. High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling. Neuron 63, 818–829 (2009).

    Article  CAS  Google Scholar 

  44. Pinheiro, P. & Mulle, C. Kainate receptors. Cell Tissue Res. 326, 457–482 (2006).

    Article  CAS  Google Scholar 

  45. Lerma, J. Roles and rules of kainate receptors in synaptic transmission. Nat. Rev. Neurosci. 4, 481–495 (2003).

    Article  CAS  Google Scholar 

  46. Barberis, A., Sachidhanandam, S. & Mulle, C. GluR6/KA2 kainate receptors mediate slow-deactivating currents. J. Neurosci. 28, 6402–6406 (2008).

    Article  CAS  Google Scholar 

  47. Contractor, A. et al. Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2−/− mice. J. Neurosci. 23, 422–429 (2003).

    Article  CAS  Google Scholar 

  48. Michishita, M. et al. A novel gene, Btcl1, encoding CUB and LDLa domains is expressed in restricted areas of mouse brain. Biochem. Biophys. Res. Commun. 306, 680–686 (2003).

    Article  CAS  Google Scholar 

  49. Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Tomita and Castillo laboratories for helpful discussions. We thank M.T.W. Ho for technical advice on slice preparation, G. Somers for maintaining mouse colonies, S.F. Heinemann (Salk Institute) for generating GluK2 knockout mice and the KOMP for creating Neto1 KO mice. S.T. and P.E.C. are supported by grants from the US National Institutes of Health/National Institute of Mental Health (R01 MH085080 and R01 MH081935, respectively). C.S. is supported by a Boehringer-Ingelheim PhD fellowship. M.W. is supported by Grants-in-Aid for Scientific Research (19100005) provided by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

S.T. and P.E.C. conceived the project and wrote the manuscript. C.S., D.L.H., M.Y., K.S.K., M.W. and S.T. performed all of the experiments and analyzed results. All of the authors, C.S. and D.L.H. in particular, contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Pablo E Castillo or Susumu Tomita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 13292 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straub, C., Hunt, D., Yamasaki, M. et al. Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1. Nat Neurosci 14, 866–873 (2011). https://doi.org/10.1038/nn.2837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing