Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two fundamentally different classes of microbial genes

This article has been updated

Abstract

The evolution of bacterial and archaeal genomes is highly dynamic and involves extensive horizontal gene transfer and gene loss14. Furthermore, many microbial species appear to have open pangenomes, where each newly sequenced genome contains more than 10% ORFans, that is, genes without detectable homologues in other species5,6. Here, we report a quantitative analysis of microbial genome evolution by fitting the parameters of a simple, steady-state evolutionary model to the comparative genomic data on the gene content and gene order similarity between archaeal genomes. The results reveal two sharply distinct classes of microbial genes, one of which is characterized by effectively instantaneous gene replacement, and the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of the size of the prokaryotic genomic universe, which appears to consist of at least a billion distinct genes. Furthermore, the same distribution of constraints is shown to govern the evolution of gene complement and gene order, without the need to invoke long-range conservation or the selfish operon concept7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the genome evolution model.
Figure 2: Gene content similarity between archaea versus distance along the tree.
Figure 3: Gene order similarity between archaea versus distance along the tree.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Mushegian, A. R. & Koonin, E. V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes [see comments]. Proc. Natl Acad. Sci. USA 93, 10268–10273 (1996).

    Article  CAS  Google Scholar 

  2. Kolstø, A. B. Dynamic bacterial genome organization. Mol. Microbiol. 24, 241–248 (1997).

    Article  Google Scholar 

  3. Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1, 127–136 (2003).

    Article  CAS  Google Scholar 

  4. Koonin, E. V. & Wolf, Y. I. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 36, 6688–6719 (2008).

    Article  CAS  Google Scholar 

  5. Daubin, V. & Ochman, H. Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14, 1036–1042 (2004).

    Article  CAS  Google Scholar 

  6. Yin, Y. & Fischer, D. On the origin of microbial ORFans: quantifying the strength of the evidence for viral lateral transfer. BMC Evol. Biol. 6, 63 (2006).

    Article  Google Scholar 

  7. Lawrence, J. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9, 642–648 (1999).

    Article  CAS  Google Scholar 

  8. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Archaeal clusters of orthologous genes (arCOGs): an update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life (Basel) 5, 818–840 (2015).

    CAS  Google Scholar 

  9. Medini, D. et al. Microbiology in the post-genomic era. Nat. Rev. Microbiol. 6, 419–430 (2008).

    Article  CAS  Google Scholar 

  10. Haegeman, B. & Weitz, J. S. A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics 13, 196 (2012).

    Article  CAS  Google Scholar 

  11. Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 4, 443–456 (2012).

    Article  CAS  Google Scholar 

  12. Collins, R. E. & Higgs, P. G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413–3425 (2012).

    Article  CAS  Google Scholar 

  13. Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Gene frequency distributions reject a neutral model of genome evolution. Genome Biol. Evol. 5, 233–242 (2013).

    Article  Google Scholar 

  14. Krylov, D. M., Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13, 2229–2235 (2003).

    Article  CAS  Google Scholar 

  15. Wolf, Y. I., Carmel, L. & Koonin, E. V. Unifying measures of gene function and evolution. Proc. Biol. Sci. 273, 1507–1515 (2006).

    Article  CAS  Google Scholar 

  16. Dagan, T. & Martin, W. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc. Natl Acad. Sci. USA 104, 870–875 (2007).

    Article  CAS  Google Scholar 

  17. Koonin, E. V. & Wolf, Y. I. Evolutionary systems biology links between gene evolution and function. Curr. Opin. Biotechnol. 17, 481–487 (2006).

    Article  CAS  Google Scholar 

  18. Wolf, Y. I. Coping with the quantitative genomics ‘elephant’: the correlation between the gene dispensability and evolution rate. Trends Genet. 22, 354–357 (2006).

    Article  CAS  Google Scholar 

  19. Lawrence, J. G. & Roth, J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–1860 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson, G. A. et al. Orphans as taxonomically restricted and ecologically important genes. Microbiology 151, 2499–2501 (2005).

    Article  CAS  Google Scholar 

  21. Yu, G. & Stoltzfus, A. Population diversity of ORFan genes in Escherichia coli. Genome Biol. Evol. 4, 1176–1187 (2012).

    Article  Google Scholar 

  22. Lobb, B., Kurtz, D. A., Moreno-Hagelsieb, G. & Doxey, A. C. Remote homology and the functions of metagenomic dark matter. Front. Genet. 6, 234 (2015).

    Article  Google Scholar 

  23. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  Google Scholar 

  24. Cortez, D., Forterre, P. & Gribaldo, S. A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol. 10, R65 (2009).

    Article  Google Scholar 

  25. Iranzo, J., Puigbo, P., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Inevitability of genetic parasites. Genome Biol. Evol. 8, 2856–2869 (2016).

    Article  CAS  Google Scholar 

  26. Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 10494–10499 (2002).

    Article  CAS  Google Scholar 

  27. Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).

    Article  CAS  Google Scholar 

  28. Vernikos, G., Medini, D., Riley, D. R. & Tettelin, H. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 23, 148–154 (2015).

    Article  CAS  Google Scholar 

  29. Tettelin, H., Riley, D., Cattuto, C. & Medini, D. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477 (2008).

    Article  CAS  Google Scholar 

  30. Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol. 12, 66 (2014).

    Article  Google Scholar 

  31. Wolf, Y. I., Novichkov, P. S., Karev, G. P., Koonin, E. V. & Lipman, D. J. The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages. Proc. Natl Acad. Sci. USA 106, 7273–7280 (2009).

    Article  CAS  Google Scholar 

  32. Yang, Z. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol. Biol. Evol. 10, 1396–1401 (1993).

    CAS  PubMed  Google Scholar 

  33. Kimura, M. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl Acad. Sci. USA 76, 3440–3444 (1979).

    Article  CAS  Google Scholar 

  34. Creevey, C. J. et al. Does a tree-like phylogeny only exist at the tips in the prokaryotes? Proc. Biol. Sci. 271, 2551–2558 (2004).

    Article  CAS  Google Scholar 

  35. Cleveland, W. S. & Devlin, S. J. Locally-weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. Higgs (McMaster University), J. Iranzo (NCBI, NIH) and D. Kristensen (NCBI; currently, University of Iowa) for discussions. The authors' research is supported by intramural funds of the US Department of Health and Human Services (to the National Library of Medicine).

Author information

Authors and Affiliations

Authors

Contributions

Y.I.W. and E.V.K. conceived the study. Y.I.W. performed research. Y.I.W., K.S.M., A.E.L. and E.V.K. analysed the results. Y.I.W. and E.V.K. wrote the manuscript, which was read, edited and approved by all authors.

Corresponding author

Correspondence to Eugene V. Koonin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–15, Supplementary Table 1 (PDF 2154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, Y., Makarova, K., Lobkovsky, A. et al. Two fundamentally different classes of microbial genes. Nat Microbiol 2, 16208 (2017). https://doi.org/10.1038/nmicrobiol.2016.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing