Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Nanomole-scale protein solid-state NMR by breaking intrinsic 1H T1 boundaries

Abstract

We present an approach that accelerates protein solid-state NMR 5–20-fold using paramagnetic doping to condense data-collection time (to 0.2 s per scan), overcoming a long-standing limitation on slow recycling owing to intrinsic 1H T1 longitudinal spin relaxation. Using low-power schemes under magic-angle spinning at 40 kHz, we obtained two-dimensional 13C-13C and 13C-15N solid-state NMR spectra for several to tens of nanomoles of β-amyloid fibrils and ubiquitin in 1–2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effectiveness of the PACC approach for hydrated proteins.
Figure 2: 2D chemical-shift correlation SSNMR spectra for mass-limited systems by the PACC approach.
Figure 3: 13C T1 relaxation rate enhancement (ΔR1) by 200 mM Cu-EDTA paramagnetic relaxation agent on Aβ(1–40) fibrils.

Similar content being viewed by others

References

  1. Ernst, R.R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987).

    Google Scholar 

  2. Weliky, D.P. et al. Nat. Struct. Biol. 6, 141–145 (1999).

    Article  CAS  Google Scholar 

  3. Igumenova, T.I. et al. J. Am. Chem. Soc. 126, 6720–6727 (2004).

    Article  CAS  Google Scholar 

  4. Mani, R. et al. Proc. Natl. Acad. Sci. USA 103, 16242–16247 (2006).

    Article  CAS  Google Scholar 

  5. Lange, A. et al. Nature 440, 959–962 (2006).

    Article  CAS  Google Scholar 

  6. Petkova, A.T., Yau, W.M. & Tycko, R. Biochemistry 45, 498–512 (2006).

    Article  CAS  Google Scholar 

  7. Chimon, S. et al. Nat. Struct. Mol. Biol. 14, 1157–1164 (2007).

    Article  CAS  Google Scholar 

  8. Wasmer, C. et al. Science 319, 1523–1526 (2008).

    Article  CAS  Google Scholar 

  9. Hall, D.A. et al. Science 276, 930–932 (1997).

    Article  CAS  Google Scholar 

  10. Ishii, Y., Yesinowski, J.P. & Tycko, R. J. Am. Chem. Soc. 123, 2921–2922 (2001).

    Article  CAS  Google Scholar 

  11. Edison, A.S. & Long, J.R. Nature 447, 646–647 (2007).

    Article  CAS  Google Scholar 

  12. Ganapathy, S., Naito, A. & McDowell, C.A. J. Am. Chem. Soc. 103, 6011–6015 (1981).

    Article  CAS  Google Scholar 

  13. Wickramasinghe, N.P. et al. J. Chem. Phys. 128, 52210 (2008).

    Article  Google Scholar 

  14. Linser, R., Chevelkov, V., Diehl, A. & Reif, B. J. Magn. Reson. 189, 209–216 (2007).

    Article  CAS  Google Scholar 

  15. Buffy, J.J. et al. Biophys. J. 85, 2363–2373 (2003).

    Article  CAS  Google Scholar 

  16. Pintacuda, G. et al. Angew. Chem. Int. Ed. 46, 1079–1082 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Dreyfus Foundation Teacher-Scholar Award program, the US National Science Foundation (CAREER; CHE 449952), Alzheimer's Association (IIRG; 08-91256) and the National Institutes of Health RO1 program (AG028490) to Y.I., and Estonian Science foundation programs to A.S. We thank R. Tycko (National Institutes of Health) for providing a structural model6 used for Figure 3.

Author information

Authors and Affiliations

Authors

Contributions

N.P.W. and Y.I. designed the experiments. N.P.W., S.P., C.R.J., C.B., F.L., M.K. and Y.I. performed the experiments. J.P. and A.S. constructed the NMR probe. F.L., S.M. and L.W.-M.F. established the expression system of α-spectrin II. N.P.W. and Y.I. wrote the paper.

Corresponding author

Correspondence to Yoshitaka Ishii.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1, Supplementary Methods, Supplementary Data (PDF 1841 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wickramasinghe, N., Parthasarathy, S., Jones, C. et al. Nanomole-scale protein solid-state NMR by breaking intrinsic 1H T1 boundaries. Nat Methods 6, 215–218 (2009). https://doi.org/10.1038/nmeth.1300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing