Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium

Abstract

Examples of stable binary icosahedral quasicrystals are relatively rare, and at present there are no known examples featuring localized magnetic moments. These would represent an ideal model system for attaining a deeper understanding of the nature of magnetic interactions in aperiodic lattices. Here we report the discovery of a family of at least seven rare earth icosahedral binary quasicrystals, i-R–Cd (R = Gd to Tm, Y), six of which bear localized magnetic moments. Our work highlights the importance of carefully motivated searches through phase space1 and supports the proposal that, like icosahedral Sc12Zn88 (ref. 2), binary quasicrystalline phases may well exist nearby known crystalline approximants, perhaps as peritectically forming compounds with very limited liquidus surfaces, offering very limited ranges of composition/temperature for primary solidification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Revised cadmium–gadolinium binary phase diagram.
Figure 2: Weiss temperature, Θ, values versus de Gennes factor.
Figure 3: Single-grain and powder X-ray diffraction from i-Gd–Cd.
Figure 4: Low-temperature FC and ZFC magnetic susceptibility, M(T)/H, data.

Similar content being viewed by others

References

  1. Canfield, P. C. Fishing the Fermi sea. Nature Phys. 4, 167–169 (2008).

    Article  CAS  Google Scholar 

  2. Canfield, P. C. et al. Solution growth of a binary icosahedral quasicrystal of Sc12Zn88 . Phys. Rev. B 81, 020201(R) (2010).

    Article  Google Scholar 

  3. Tsai, A. P., Guo, J. Q., Abe, E., Takakura, H. & Sato, T. J. A stable binary quasicrystal. Nature 408, 537–538 (2000).

    Article  CAS  Google Scholar 

  4. Takakura, H., Pay Gómez, C., Yamamoto, A., De Boissieu, M. & Tsai, A. P. Atomic structure of the binary icosahedral Yb-Cd quasicrystal. Nature Mater. 6, 58–63 (2007).

    Article  CAS  Google Scholar 

  5. Tamura, R., Muro, Y., Hiroto, T., Nishimoto, K. & Takabatake, T. Long-range magnetic order in the quasicrystalline approximant Cd6Tb. Phys. Rev. B 82, 220201(R) (2010).

    Article  Google Scholar 

  6. Kim, M. G. et al. Antiferromagnetic order in the quasicrystal approximant Cd6Tb studied by X-ray resonant magnetic scattering. Phys. Rev. B 85, 134442 (2012).

    Article  Google Scholar 

  7. Mori, A. et al. Electrical and magnetic properties of quasicrystal approximants RCd6 (R: rare earth). J. Phys. Soc. Jpn 81, 024720 (2012).

    Article  Google Scholar 

  8. Fukamichi, K. Physical Properties of Quasicrystals 295–326 (Springer, 1999).

    Book  Google Scholar 

  9. Hippert, F. & Prejean, J. J. Magnetism in quasicrystals. Phil. Mag. 88, 2175–2190 (2008).

    Article  CAS  Google Scholar 

  10. Fisher, I. R. et al. Magnetic and transport properties of single-grain R–Mg–Zn icosahedral quasicrystals (R = Y,Y1−xGdx, Y1−xTbx, Tb, Dy, Ho, and Er). Phys. Rev. B 59, 308–321 (1999).

    Article  CAS  Google Scholar 

  11. Sato, T. J., Guo, J. Q. & Tsai, A.-P. Magnetic properties of the icosahedral Cd-Mg-rare-earth quasicrystals. J. Phys. Condens. Matter 13, L105 (2001).

    Article  CAS  Google Scholar 

  12. Sebastian, S. E., Huie, T., Fisher, I. R., Dennis, K. W. & Kramer, M. J. Magnetic properties of single grain R–Mg–Cd primitive icosahedral quasicrystals (R = Y, Gd, Tb or Dy). Phil. Mag. 84, 1029–1037 (2004).

    Article  CAS  Google Scholar 

  13. Sato, T. J. Short-range order and spin-glass-like freezing in A–Mg-R (A = Zn or Cd; R = rare-earth elements) magnetic quasicrystals. Acta Crystallogr. A 61, 39 (2005).

    Article  Google Scholar 

  14. Jazbec, S. et al. Geometric origin of magnetic frustration in the μ-Al4Mn giant-unit-cell complex intermetallic. J. Phys. Condens. Matter 23, 045702 (2011).

    Article  CAS  Google Scholar 

  15. Wang, P., Stadnik, Z. M., Al-Qadi, K. & Przewoźnik, J. A comparative study of the magnetic properties of the 1/1 approximant Ag50In36Gd14 and the icosahedral quasicrystal Ag50In36Gd14 . J. Phys. Condens. Matter 21, 436007 (2009).

    Article  CAS  Google Scholar 

  16. Ibuka, S., Iida, K. & Sato, T. J. Magnetic properties of the Ag–In–rare-earth 1/1 approximants. J. Phys. Condens. Matter 23, 056001 (2011).

    Article  Google Scholar 

  17. Goldman, A. I. & Kelton, K. F. Quasicrystals and crystalline approximants. Rev. Mod. Phys. 65, 213–230 (1993).

    Article  Google Scholar 

  18. Lifshitz, R. Symmetry of magnetically ordered quasicrystals. Phys. Rev. Lett. 80, 2717–2720 (1998).

    Article  CAS  Google Scholar 

  19. Canfield, P. C. Properties and Applications of Complex Intermetallics 93–111 (World Scientific, 2010).

    Google Scholar 

  20. Canfield, P. C. & Fisher, I. R. High-temperature solution growth of intermetallic single crystals and quasicrystals. J. Cryst. Growth 225, 155–161 (2001).

    Article  CAS  Google Scholar 

  21. Gschneidner, K. A. Jr & Calderwood, F. W. in Binary Alloy Phase Diagrams 2nd edn Vol. 2 (ed. Massalski, T. B.) 980–983 (1990).

    Google Scholar 

  22. Kreyssig, A. et al. Crystallographic phase transition within the magnetically ordered state of Ce2Fe17 . Phys. Rev. B 76, 054421 (2007).

    Article  Google Scholar 

  23. Shannon, R. D. Revised effective ionic radii and systematic study of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  24. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, (2004).

  25. Pay Gómez, C. & Lidin, S. Comparative structural study of the disordered MCd6 quasicrystal approximants. Phys. Rev. B 68, 024203 (2003).

    Article  Google Scholar 

  26. Kawana, D., Watanuki, T., Machida, A., Shobu, T. & Aoki, K. Intermediate-valence quasicrystal of a Cd-Yb alloy under pressure. Phys. Rev. B 81, 220202(R) (2010).

    Article  Google Scholar 

  27. Tsai, A-P. Discovery of stable icosahedral quasicrystals: Progress in understanding structure and properties. Chem. Soc. Rev.http://dx.doi.org/10.1039/C3CS35388E (2013).

  28. Janot, C. Quasicrystals: A Primer (Oxford Univ. Press, 1992).

    Google Scholar 

  29. Mydosh, J. A. Spin Glasses: An Experimental Introduction (Taylor and Francis, 1993).

    Google Scholar 

Download references

Acknowledgements

We acknowledge and thank W. Straszheim for the WDS measurements, D. S. Robinson and A. Sapkota for assistance with the high-energy X-ray diffraction measurements and R. J. McQueeney for useful discussions. The research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, US Department of Energy (DOE). Ames Laboratory is operated for DOE by Iowa State University under contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by the US DOE under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

A.I.G., P.C.C., S.L.B. and A.K. designed the measurements; T.K., S.L.B. and P.C.C. grew the samples, and performed and analysed the magnetization measurements; K.W.D. performed the differential thermal analysis measurements and analysis; T.K., A.J., M.R., A.K. and A.I.G. performed the X-ray diffraction measurements and data analysis. A.I.G. and P.C.C. drafted the manuscript and all authors participated in the writing and review of the final draft.

Corresponding authors

Correspondence to Alan I. Goldman or Paul C. Canfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, A., Kong, T., Kreyssig, A. et al. A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium. Nature Mater 12, 714–718 (2013). https://doi.org/10.1038/nmat3672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing