Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-limited plasmonic welding of silver nanowire junctions

Abstract

Nanoscience provides many strategies to construct high-performance materials and devices, including solar cells, thermoelectrics, sensors, transistors, and transparent electrodes. Bottom-up fabrication facilitates large-scale chemical synthesis without the need for patterning and etching processes that waste material and create surface defects. However, assembly and contacting procedures still require further development. Here, we demonstrate a light-induced plasmonic nanowelding technique to assemble metallic nanowires into large interconnected networks. The small gaps that form naturally at nanowire junctions enable effective light concentration and heating at the point where the wires need to be joined together. The extreme sensitivity of the heating efficiency on the junction geometry causes the welding process to self-limit when a physical connection between the wires is made. The localized nature of the heating prevents damage to low-thermal-budget substrates such as plastics and polymer solar cells. This work opens new avenues to control light, heat and mass transport at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical nanowelding set-up and scanning electron microscope (SEM) images before and after illumination.
Figure 2: Transmission electron microscope (TEM) images before and after illumination.
Figure 3: Selected area electron diffraction (SAED) of silver nanowire junctions before and after illumination.
Figure 4: Finite element method simulations of optical heat generation at silver nanowire junctions during the nanowelding process.
Figure 5: Optical and electrical properties of silver nanowire junctions before and after illumination.
Figure 6: Applications of local plasmonic heating on temperature-sensitive materials and devices.

Similar content being viewed by others

References

  1. Baffou, G., Quidant, R. & Girard, C. Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett. 94, 153109 (2009).

    Article  Google Scholar 

  2. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  CAS  Google Scholar 

  3. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    Article  CAS  Google Scholar 

  4. Röntzsch, L., Heinig, K-H., Schuller, J. A. & Brongersma, M. L. Thin film patterning by surface-plasmon-induced thermocapillarity. Appl. Phys. Lett. 90, 044105 (2007).

    Article  Google Scholar 

  5. Govorov, A. O. et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nano. Res. Lett. 1, 84–90 (2006).

    Article  Google Scholar 

  6. Soares, B., Jonsson, F. & Zheludev, N. All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett. 98, 153905 (2007).

    Article  Google Scholar 

  7. Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).

    Article  CAS  Google Scholar 

  8. Boyd, D. A., Adleman, J. R., Goodwin, D. G. & Psaltis, D. Chemical separations by bubble-assisted interphase mass-transfer. Anal. Chem. 80, 2452–2456 (2008).

    Article  CAS  Google Scholar 

  9. Stehr, J. et al. Gold nanostoves for microsecond DNA melting analysis. Nano Lett. 8, 619–623 (2008).

    Article  CAS  Google Scholar 

  10. Halas, N. J., Lal, S., Chang, W-S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    Article  CAS  Google Scholar 

  11. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  12. Brongersma, M. L., Hartman, J. W. & Atwater, H. A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B 62, R16356–R16359 (2000).

    Article  CAS  Google Scholar 

  13. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  14. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  CAS  Google Scholar 

  15. Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).

    Article  CAS  Google Scholar 

  16. Romero, I., Aizpurua, J., Bryant, G. W. & García de Abajo, F. J. Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers. Opt. Express 14, 9988–9999 (2006).

    Article  Google Scholar 

  17. García de Abajo, F. J. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983–17987 (2008).

    Article  Google Scholar 

  18. Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009).

    Article  CAS  Google Scholar 

  19. Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nature Nanotech. 5, 732–736 (2010).

    Article  CAS  Google Scholar 

  20. Gaynor, W., Burkhard, G. F., McGehee, M. D. & Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 23, 2905–2910 (2011).

    Article  CAS  Google Scholar 

  21. Gaynor, W., Lee, J-Y. & Peumans, P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 4, 30–34 (2010).

    Article  CAS  Google Scholar 

  22. Hecht, D. S., Hu, L. & Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482–1513 (2011).

    Article  CAS  Google Scholar 

  23. Kang, M-G., Xu, T., Park, H. J., Luo, X. & Guo, L. J. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv. Mater. 22, 4378–4383 (2010).

    Article  CAS  Google Scholar 

  24. Lee, J-Y., Connor, S. T., Cui, Y. & Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 10, 1276–1279 (2010).

    Article  CAS  Google Scholar 

  25. Li, L. et al. Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire–polymer composite electrode. Adv. Mater. 23, 5563–5567 (2011).

    Article  CAS  Google Scholar 

  26. Madaria, A. R., Kumar, A. & Zhou, C. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22, 245201 (2011).

    Article  Google Scholar 

  27. Yang, L. et al. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interf. 3, 4075–4084 (2011).

    Article  CAS  Google Scholar 

  28. Yu, Z., Li, L., Zhang, Q., Hu, W. & Pei, Q. Silver nanowire–polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 23, 4453–4457 (2011).

    Article  CAS  Google Scholar 

  29. Yu, Z. et al. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23, 664–668 (2011).

    Article  CAS  Google Scholar 

  30. Hu, L., Kim, H. S., Lee, J-Y., Peumans, P. & Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955–2963 (2010).

    Article  CAS  Google Scholar 

  31. Karim, S. et al. Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology 17, 5954–5959 (2006).

    Article  CAS  Google Scholar 

  32. Chen, H. et al. Transmission-electron-microscopy study on fivefold twinned silver nanorods. J. Phys. Chem. B 108, 12038–12043 (2004).

    Article  CAS  Google Scholar 

  33. Thompson, C. V. Grain growth in thin films. Annu. Rev. Mater. Sci. 20, 245–268 (1990).

    Article  CAS  Google Scholar 

  34. Lu, Y., Huang, J. Y., Wang, C., Sun, S. & Lou, J. Cold welding of ultrathin gold nanowires. Nature Nanotech. 5, 218–224 (2010).

    Article  CAS  Google Scholar 

  35. Guo, S. The creation of nanojunctions. Nanoscale 2, 2521–2529 (2010).

    Article  CAS  Google Scholar 

  36. Cui, Q., Gao, F., Mukherjee, S. & Gu, Z. Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems. Small 5, 1246–1257 (2009).

    Article  CAS  Google Scholar 

  37. Kim, S. J. & Jang, D-J. Laser-induced nanowelding of gold nanoparticles. Appl. Phys. Lett. 86, 033112 (2005).

    Article  Google Scholar 

  38. Mafuné, F., Kohno, J-Y., Takeda, Y. & Kondow, T. Nanoscale soldering of metal nanoparticles for construction of higher-order structures. J. Am. Chem. Soc. 125, 1686–1687 (2003).

    Article  Google Scholar 

  39. Xu, S. et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005).

    Article  CAS  Google Scholar 

  40. Shin, H. et al. Photoresist-free lithographic patterning of solution-processed nanostructured metal thin films. Adv. Mater. 20, 3457–3461 (2008).

    Article  CAS  Google Scholar 

  41. Zhang, Y. et al. Tailoring the intrinsic metallic states of double-walled nanotube films by self-soldered laser welding. Appl. Phys. Lett. 91, 233109 (2007).

    Article  Google Scholar 

  42. Gu, Z., Ye, H., Bernfeld, A., Livi, K. J. T. & Gracias, D. H. Three-dimensional electrically interconnected nanowire networks formed by diffusion bonding. Langmuir 23, 979–982 (2007).

    Article  CAS  Google Scholar 

  43. Sommer, J. & Herzig, C. Direct determination of grain-boundary and dislocation self-diffusion coefficients in silver from experiments in type-C kinetics. J. Appl. Phys. 72, 2758–2766 (1992).

    Article  CAS  Google Scholar 

  44. Prokes, S. M., Alexson, D., Glembocki, O. J., Park, H. D. & Rendell, R. W. Plasmonic behavior of Ag/dielectric nanowires and the effect of geometry. J. Vacuum Sci. Technol. B 27, 2055–2061 (2009).

    Article  CAS  Google Scholar 

  45. Holland, W. & Hall, D. Frequency shifts of an electric-dipole resonance near a conducting surface. Phys. Rev. Lett. 52, 1041–1044 (1984).

    Article  CAS  Google Scholar 

  46. Hu, M., Ghoshal, A., Marquez, M. & Kik, P. G. Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances. J. Phys. Chem. C 114, 7509–7514 (2010).

    Article  CAS  Google Scholar 

  47. Mock, J. J. et al. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 8, 2245–2252 (2008).

    Article  CAS  Google Scholar 

  48. Chu, Y. & Crozier, K. B. Experimental study of the interaction between localized and propagating surface plasmons. Opt. Lett. 34, 244–246 (2009).

    Article  CAS  Google Scholar 

  49. Knight, M. W. et al. Nanoparticle-mediated coupling of light into a nanowire. Nano Lett. 7, 2346–2350 (2007).

    Article  CAS  Google Scholar 

  50. Hao, F. & Nordlander, P. Plasmonic coupling between a metallic nanosphere and a thin metallic wire. Appl. Phys. Lett. 89, 103101 (2006).

    Article  Google Scholar 

  51. Wei, H. et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle–nanowire systems. Nano Lett. 8, 2497–2502 (2008).

    Article  CAS  Google Scholar 

  52. Le, F. et al. Plasmons in the metallic nanoparticle–film system as a tunable impurity problem. Nano Lett. 5, 2009–2013 (2005).

    Article  CAS  Google Scholar 

  53. Cao, L., Fan, P., Barnard, E. S., Brown, A. M. & Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett. 2649–2654 (2010).

  54. Du, C. et al. Confocal white light reflection imaging for characterization of metal nanostructures. Opt. Commun. 281, 5360–5363 (2008).

    Article  CAS  Google Scholar 

  55. Lee, J-Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication was based on work supported by the Center for Advanced Molecular Photovoltaics (CAMP) (Award No KUS-C1-015-21), funded by King Abdullah University of Science and Technology (KAUST). Y.C. acknowledges support from KAUST Investigator Award (No. KUS-I1-001-12). We gratefully acknowledge valuable discussions with P. Nordlander on the optical coupling of metallic nanostructures. E.C.G. acknowledges partial support from the Global Climate and Energy Project at Stanford University.

Author information

Authors and Affiliations

Authors

Contributions

E.C.G. and M.L.B. conceived of the experiments, W.C. performed the FEM simulations, J.J.C. performed the TEM, S.T.C. synthesized the silver nanowires, F.M. assisted with the dark-field scattering measurements, M.G.C. built the spray-coating set-up and deposited the silver nanowires on the polymer solar cells and Saran wrap, and E.C.G. performed all other experiments. M.L.B., Y.C. and M.D.M. supervised the project. E.C.G. and M.L.B. wrote the manuscript. All authors discussed the results and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnett, E., Cai, W., Cha, J. et al. Self-limited plasmonic welding of silver nanowire junctions. Nature Mater 11, 241–249 (2012). https://doi.org/10.1038/nmat3238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing