Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly

Abstract

Obtaining thermoelectric materials with high figure of merit ZT is an exacting challenge because it requires the independent control of electrical conductivity, thermal conductivity and Seebeck coefficient, which are often unfavourably coupled. Recent works have devised strategies based on nanostructuring and alloying to address this challenge in thin films, and to obtain bulk p-type alloys with ZT>1. Here, we demonstrate a new class of both p- and n-type bulk nanomaterials with room-temperature ZT as high as 1.1 using a combination of sub-atomic-per-cent doping and nanostructuring. Our nanomaterials were fabricated by bottom-up assembly of sulphur-doped pnictogen chalcogenide nanoplates sculpted by a scalable microwave-stimulated wet-chemical method. Bulk nanomaterials from single-component assemblies or nanoplate mixtures of different materials exhibit 25–250% higher ZT than their non-nanostructured bulk counterparts and state-of-the-art alloys. Adapting our synthesis and assembly approach should enable nanobulk thermoelectrics with further increases in ZT for transforming thermoelectric refrigeration and power harvesting technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the scalable synthesis used to obtain both n- and p-type bulk thermoelectric nanomaterials with high figures of merit.
Figure 2: Figures of merit ZT for single-component and multicomponent bulk nanostructured pnictogen chalcogenides.
Figure 3: Single-crystal hexagonal pnictogen chalcogenide nanoplates and mercaptan-mediated sulphur injection.
Figure 4: Thermoelectric characterization of bulk-nanostructured pnictogen chalcogenides.
Figure 5: Diminution of lattice thermal conductivity in bulk-nanostructured chalcogenides due to nanoscale grain size and porosity.

Similar content being viewed by others

References

  1. Rowe, D. M. (ed.) Thermoelectrics Handbook: Macro to Nano (CRC, 2005).

  2. Rowe, D. M. (ed.) CRC Handbook of Thermoelectrics (CRC, 1995).

  3. Nolas, G. S., Sharp, J. & Goldsmid, H. J. Thermoelectrics: Basic Principles and New Materials Developments (Springer, 2001).

    Book  Google Scholar 

  4. Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  5. Minnich, A. J., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energ. Environ. Sci. 2, 466–479 (2009).

    Article  CAS  Google Scholar 

  6. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  7. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  8. Xie, W. J., Tang, X. F., Yan, Y. G., Zhang, Q. J. & Tritt, T. M. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009).

    Article  Google Scholar 

  9. Yan, X. A. et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3 . Nano Lett. 10, 3373–3378 (2010).

    Article  CAS  Google Scholar 

  10. Martin, J., Nolas, G. S., Zhang, W. & Chen, L. PbTe nanocomposites synthesized from PbTe nanocrystals. Appl. Phys. Lett. 90, 222112 (2007).

    Article  Google Scholar 

  11. Zhang, G. Q., Wang, W., Lu, X. L. & Li, X. G. Solvothermal synthesis of V–VI binary and ternary hexagonal platelets: The oriented attachment mechanism. Cryst. Growth Des. 9, 145–150 (2009).

    Article  CAS  Google Scholar 

  12. Purkayastha, A. et al. Surfactant-directed synthesis of branched bismuth telluride/sulfide core/shell nanorods. Adv. Mater. 20, 2679–2683 (2008).

    Article  CAS  Google Scholar 

  13. Purkayastha, A., Lupo, F., Kim, S., Borca-Tasciuc, T. & Ramanath, G. Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods. Adv. Mater. 18, 496–500 (2006).

    Article  CAS  Google Scholar 

  14. Purkayastha, A. et al. Molecularly protected bismuth telluride nanoparticles: Microemulsion synthesis and thermoelectric transport properties. Adv. Mater. 18, 2958–2963 (2006).

    Article  CAS  Google Scholar 

  15. Yoo, B. et al. Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater. 19, 296–299 (2007).

    Article  CAS  Google Scholar 

  16. Scheele, M. et al. ZT enhancement in solution-grown Sb(2−x)BixTe3nanoplatelets. ACS Nano 4, 4283–4291 (2010).

    Article  CAS  Google Scholar 

  17. Zhao, Y. X., Dyck, J. S., Hernandez, B. M. & Burda, C. Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J. Am. Chem. Soc. 132, 4982–4983 (2010).

    Article  CAS  Google Scholar 

  18. Scheele, M. et al. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv. Funct. Mater. 19, 3476–3483 (2009).

    Article  CAS  Google Scholar 

  19. Dirmyer, M. R., Martin, J., Nolas, G. S., Sen, A. & Badding, J. V. Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 5, 933–937 (2009).

    Article  CAS  Google Scholar 

  20. Cullity, B. D. & Stock, S. R. Elements of X-Ray Diffraction 3rd edn (Prentice, 2001).

  21. Reyes-Gasga, J., Gomez-Rodriguez, A., Gao, X. X. & Jose-Yacaman, M. On the interpretation of the forbidden spots observed in the electron diffraction patterns of flat Au triangular nanoparticles. Ultramicroscopy 108, 929–936 (2008).

    Article  CAS  Google Scholar 

  22. Chitroub, M., Scherrer, S. & Scherrer, H. Anisotropy of the selenium diffusion coefficient in bismuth telluride. J. Phys. Chem. Solids 61, 1693–1701 (2000).

    Article  CAS  Google Scholar 

  23. Pal, S. K. et al. Thermal and electrical transport along MWCNT arrays grown on Inconel substrates. J. Mater. Res. 23, 2099–2105 (2008).

    Article  CAS  Google Scholar 

  24. Horak, J., Lostak, P., Koudelka, L. & Novotny, R. Inversion of conductivity type in Bi2Te3−xSxcrystals. Solid State Commun. 55, 1031–1034 (1985).

    Article  CAS  Google Scholar 

  25. Chizhevskaya, S. N. & Shelimova, L. E. Electroactive and electroinactive dopants in Bi2Te3 and their interaction with antisite defects. Inorg. Mater. 31, 1083–1095 (1995).

    CAS  Google Scholar 

  26. Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008).

    Article  CAS  Google Scholar 

  27. Navratil, J. et al. Conduction band splitting and transport properties of Bi2Se3 . J. Solid State Chem. 177, 1704–1712 (2004).

    Article  CAS  Google Scholar 

  28. Peranio, N. & Eibl, O. Structural modulations in Bi2Te3 . J. Appl. Phys. 103, 024314 (2008).

    Article  Google Scholar 

  29. Morelli, D. T., Heremans, J. P. & Slack, G. A. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III–V semiconductors. Phys. Rev. B 66, 195304 (2002).

    Article  Google Scholar 

  30. Minnich, A. & Chen, G. Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91, 073105 (2007).

    Article  Google Scholar 

  31. Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010).

    Article  CAS  Google Scholar 

  32. Mehta, R. J. et al. Seebeck tuning in chalcogenide nanoplate assemblies by nanoscale heterostructuring. ACS Nano 4, 5055–5060 (2010).

    Article  CAS  Google Scholar 

  33. Zhao, X. B. et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the US Department of Energy, Office of Basic Energy Sciences through the S3TEC Energy Frontiers Research Center at MIT under Award DE-SC0001299, National Science Foundation grants DMR 0519081, ECCS 1002282 and CBET 0348613, and a gift grant from IBM through the Rensselaer Nanotechnology Center. We thank J. Woicik, B. Karlin and D. Fischer for help with setting up the photoemission experiments carried out at the National Synchrotron Light Source at Brookhaven National Laboratory, supported under the US Department of Energy contract DE-AC02-98CH10886. We thank J. Sharp at Marlow Industries and Z. Ren at Boston College for independently verifying our measured thermoelectric property values.

Author information

Authors and Affiliations

Authors

Contributions

R.J.M. carried out experiments, synthesized and characterized the materials and wrote the paper with G.R. Thermoelectric measurements and modelling were carried out by Y.Z. Data interpretation and analysis was carried out collaboratively by R.J.M., Y.Z., G.R. and T.B-T. C.K. and B.S. carried out transmission electron microscopy and X-ray photoelectron spectroscopy measurements, respectively. G.R. directed the project together with T.B-T. and R.W.S. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Theodorian Borca-Tasciuc or Ganpati Ramanath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1846 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, R., Zhang, Y., Karthik, C. et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature Mater 11, 233–240 (2012). https://doi.org/10.1038/nmat3213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing