Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Redox-controlled molecular permeability of composite-wall microcapsules

Abstract

Many smart materials in bioengineering, nanotechnology and medicine allow the storage and release of encapsulated drugs on demand at a specific location by an external stimulus. Owing to their versatility in material selection, polyelectrolyte multilayers are very promising systems in the development of microencapsulation technologies with permeation control1,2,3,4 governed by variations in the environmental conditions5,6,7,8. Here, organometallic polyelectrolyte multilayer capsules, composed of polyanions and polycations of poly(ferrocenylsilane) (PFS), are introduced. Their preparation involved layer-by-layer self-assembly onto colloidal templates followed by core removal. PFS polyelectrolytes feature redox-active ferrocene units in the main chain. Incorporation of PFS into the capsule walls allowed us to explore the effects of a new stimulus, that is, changing the redox state9,10, on capsule wall permeability. The permeability of these capsules could be sensitively tuned via chemical oxidation, resulting in a fast capsule expansion accompanied by a drastic permeability increase in response to a very small trigger. The substantial swelling could be suppressed by the application of an additional coating bearing common redox-inert species of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH+) on the outer wall of the capsules. Hence, we obtained a unique capsule system with redox-controlled permeability and swellability with a high application potential in materials as well as in bioscience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagrams of the organometallic multilayer capsule formation and permeability control.
Figure 2: Characterization of PFS multilayer microcapsules.
Figure 3: Redox-responsive permeability accompanied by expansion of PFS capsules.
Figure 4: Redox-responsive permeability of multilayer capsules with organometallic–organic composite-wall structures.

Similar content being viewed by others

References

  1. Dähne, L., Leporatti, S., Donath, E. & Möhwald, H. Fabrication of micro reaction cages with tailored properties. J. Am. Chem. Soc. 123, 5431–5436 (2001).

    Article  Google Scholar 

  2. Lvov, Y., Antipov, A. A., Mamedov, A., Möhwald, H. & Sukhorukov, G. B. Urease encapsulation in nanoorganized microshells. Nano Lett. 1, 125–128 (2001).

    Article  Google Scholar 

  3. Gao, C., Donath, E., Möhwald, H. & Shen, J. Spontaneous deposition of water-soluble substances into microcapsules: phenomenon, mechanism, and application. Angew. Chem. Int. Edn 41, 3789–3793 (2002).

    Article  Google Scholar 

  4. Ibarz, G., Dähne, L., Donath, E. & Möhwald, H. Smart micro- and nanocontainers for storage, transport, and release. Adv. Mater. 13, 1324–1327 (2001).

    Article  Google Scholar 

  5. Sukhorukov, G. B., Antipov, A. A., Voigt, A., Donath, E. & Möhwald, H. pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. Macromol. Rapid Commun. 22, 44–46 (2001).

    Article  Google Scholar 

  6. Antipov, A. A., Sukhorukov, G. B. & Möhwald, H. Influence of the ionic strength on the polyelectrolyte multilayers’ permeability. Langmuir 19, 2444–2448 (2003).

    Article  Google Scholar 

  7. Glinel, K., Sukhorukov, G. B., Möhwald, H., Khrenov, V. & Tauer, K. Thermalsensitive hollow capsules based on thermoresponsive polyelectrolytes. Macromol. Chem. Phys. 204, 1784–1790 (2003).

    Article  Google Scholar 

  8. Radt, B., Smith, T. A. & Caruso, F. Optically addressable nanostructured capsules. Adv. Mater. 16, 2184–2189 (2004).

    Article  Google Scholar 

  9. Zou, S., Hempenius, M. A., Schönherr, H. & Vancso, G. J. Force spectroscopy of individual stimulus-responsive poly(ferrocenyldimethylsilane) chains: towards a redox-driven macromolecular motor. Macromol. Rapid Commun. 27, 103–108 (2006).

    Article  Google Scholar 

  10. Zou, S., Korczagin, I., Hempenius, M. A., Schönherr, H. & Vancso, G. J. Single molecule force spectroscopy of smart poly(ferrocenylsilane) macromolecules: towards highly controlled redox-driven single chain motors. Polymer 47, 2483–2492 (2006).

    Article  Google Scholar 

  11. Kwon, I. C., Bae, Y. H. & Kim, S. W. Electrically credible polymer gel for controlled release of drugs. Nature 354, 291–293 (1991).

    Article  Google Scholar 

  12. Yerushalmi, R., Scherz, A., van der Boom, M. E. & Kraatz, H.-B. Stimuli responsive materials: new avenues toward smart organic devices. J. Mater. Chem. 15, 4480–4487 (2005).

    Article  Google Scholar 

  13. Pudelski, J. K. et al. Synthesis, characterization, and properties of high molecular weight poly(methylated ferrocenylsilanes) and their charge transfer polymer salts with tetracyanoethylene. Macromolecules 29, 1894–1903 (1996).

    Article  Google Scholar 

  14. Nguyen, M. T., Diaz, A. F., Dement’ev, V. V. & Pannell, K. H. High molecular weight poly(ferrocenediyl-silanes): synthesis and electrochemistry of [− (C5H4)Fe(C5H4)SiR2−]n, R=Me, Et, n-Bu, n-Hex. Chem. Mater. 5, 1389–1394 (1993).

    Article  Google Scholar 

  15. Arsenault, A. C., Miguez, H., Kitaev, V., Ozin, G. A. & Manners, I. A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards Photonic Ink (P-Ink). Adv. Mater. 15, 503–507 (2003).

    Article  Google Scholar 

  16. Rulkens, R. et al. Linear oligo(ferrocenyldimethylsilanes) with between two and nine ferrocene units: electrochemical and structural models for poly(ferrocenylsilane) high polymers. J. Am. Chem. Soc. 118, 12683–12695 (1996).

    Article  Google Scholar 

  17. Péter, M. et al. Electrochemically induced morphology and volume changes in surface-grafted poly(ferrocenyldimethylsilane) monolayers. Langmuir 20, 891–897 (2004).

    Article  Google Scholar 

  18. Shi, W. et al. Single-chain elasticity of poly(ferrocenyldimethylsilane) and poly(ferrocenylmethylphenylsilane). Macromolecules 37, 1839–1842 (2004).

    Article  Google Scholar 

  19. Hempenius, M. A., Robins, N. S., Péter, M., Kooij, E. S. & Vancso, G. J. Water-soluble poly(ferrocenylsilanes) for supramolecular assemblies by layer-by-layer deposition. Langmuir 18, 7629–7634 (2002).

    Article  Google Scholar 

  20. Hempenius, M. A. & Vancso, G. J. Synthesis of polyanionic water-soluble poly(ferrocenylsilane). Macromolecules 35, 2445–2447 (2002).

    Article  Google Scholar 

  21. Hempenius, M. A., Brito, F. F. & Vancso, G. J. Synthesis and characterization of anionic and cationic poly(ferrocenylsilane) polyelectrolytes. Macromolecules 36, 6683–6688 (2003).

    Article  Google Scholar 

  22. Ginzburg, M. et al. Layer-by-layer self-assembly of organic-organometallic polymer electrostatic superlattices using poly(ferrocenylsilanes). Langmuir 16, 9609–9614 (2000).

    Article  Google Scholar 

  23. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  Google Scholar 

  24. Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A. & Möhwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Edn 37, 2201–2205 (1998).

    Article  Google Scholar 

  25. Caruso, F., Lichtenfeld, H., Donath, E. & Möhwald, H. Investigation of electrostatic interactions in polyelectrolyte multilayer films: binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules 32, 2317–2328 (1999).

    Article  Google Scholar 

  26. Antipov, A. A. et al. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloids Surf. A 224, 175–183 (2003).

    Article  Google Scholar 

  27. Zhu, H., Stein, E. W., Lu, Z., Lvov, Y. M. & McShane, M. J. Synthesis of size-controlled monodisperse manganese carbonate microparticles as templates for uniform polyelectrolyte microcapsule formation. Chem. Mater. 17, 2323–2328 (2005).

    Article  Google Scholar 

  28. Zhang, H. & Rühe, J. Polyelectrolyte multilayers on weak polyelectrolyte brushes. Macromol. Rapid Commun. 24, 576–579 (2003).

    Article  Google Scholar 

  29. Giannotti, M. I. et al. Stimulus responsive poly(ferrocenylsilanes): redox chemistry of iron in the main chain. J. Inorg. Organom. Polym. Mater. 15, 527–540 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to E. S. Kooij (University of Twente) for his help with the ellipsometry measurements on planar multilayer films and to A. Heilig for her help with the AFM measurements in the Max Planck Institute of Colloids and Interfaces, Golm. The University of Twente, the MESA+ Institute for Nanotechnology of the University of Twente, the Dutch Science Foundation for Chemical Research NWO-CW and NanoImpuls, a Nanotechnology Program of the Ministry of Economic Affairs of the Netherlands, are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Julius Vancso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Dong, WF., Hempenius, M. et al. Redox-controlled molecular permeability of composite-wall microcapsules. Nature Mater 5, 724–729 (2006). https://doi.org/10.1038/nmat1716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing