Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A negative surface energy for alumina

Abstract

The surface energy of a solid measures the energy cost of increasing the surface area. All normal solids therefore have a positive surface energy1—if it had been negative, the solid would disintegrate. For this reason it is also generally believed that when certain ceramics can be found in a highly porous form, this is a metastable state, which will eventually sinter into the bulk solid at high temperatures. We present theoretical evidence suggesting that for θ-alumina, the surface energy is strongly dependent on the size of the crystallites, and that for some facets it is negative for thicknesses larger than 1 nm. This suggests a completely new picture of porous alumina in which the high-surface-area, nanocrystalline form is the thermodynamic ground state. The negative surface energy is found to be related to a particularly strongly adsorbed state of dissociated water on some alumina surfaces. We also present new experimental evidence based on infrared spectroscopy, in conjunction with X-ray diffraction and surface-area measurements, that θ-alumina has indeed very stable surface OH groups at high temperatures, and that this form of alumina does not sinter even at temperatures up to 1,300 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic structure of θ-Al2O3.
Figure 2: The surface energy of clean and hydroxylated surfaces of θ-Al2O3 shown as a function of the thickness of the slab.
Figure 3: The surface energy of hydroxylated θ-Al2O3 with respect to water vapour pressure and temperature.
Figure 4: Infrared spectra of surface hydroxyl groups on θ-Al2O3.

Similar content being viewed by others

References

  1. Somorjai, G.A. Introduction to Surface Chemistry and Catalysis 275; 292 (Wiley, New York, 1994).

    Google Scholar 

  2. Garvle, R.C. Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 82, 218–224 (1978).

    Article  Google Scholar 

  3. Rande, M.R. et al. Energetics of nanocrystalline TiO2 . Proc. Natl Acad. Sci. USA 99, 6476–6481 (2002).

    Article  Google Scholar 

  4. McHale, J.M., Auroux, A., Perrota, A.J. & Navrotsky, A. Surface energies and thermodynamics phase stability in nanocrystaline aluminas. Science 277, 788–791 (1997).

    Article  CAS  Google Scholar 

  5. Wefers, K. & Misra, C. Oxides and Hydroxides of Aluminium (Alcoa Technical Paper No 19. (Revised), Alcoa Laboratories, 1987).

    Google Scholar 

  6. Wolverton, C. & Hass, K. Phase stability and structure of spinel-based transition aluminas. Phys. Rev. B 63, 24102 (2001).

    Article  Google Scholar 

  7. Zhou, R.-S. & Snyder, R.T. Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta. Crystallogr. B 47, 617–630 (1991).

    Article  Google Scholar 

  8. Mo, S.-D. & Ching, W.Y. Electronic and optical properties of θ-Al2O3 and comparison to α-Al2O3 . Phys. Rev. B 57, 15219–15228 (1998).

    Article  CAS  Google Scholar 

  9. Verdozzi, C., Jennison, D.R., Schultz, P.A. & Sears, M.P. Sapphire (0001) Surface, clean and with d-metal overlayers. Phys. Rev. Lett. 82, 799–802 (1999).

    Article  CAS  Google Scholar 

  10. Ruberto, C., Yourdshahyan, Y. & Lundqvist, B.I. Surface properties of metastable alumina: A comparative study of κ- and α-Al2O3 . Phys. Rev. B 67, 195412 (2003).

    Article  Google Scholar 

  11. Hass, K.C., Schneider, W.F., Curioni, A. & Andreoni, W. The chemistry of water on alumina surfaces: Reaction dynamics from first principles. Science 282, 265–268 (1998).

    Article  CAS  Google Scholar 

  12. Łodziana, L.Z., Nørskov, J.K. & Stoltze, P. The stability of the hydroxylated (0001) surface of α-Al2O3 . J. Chem. Phys. 118, 11179 (2003).

    Article  Google Scholar 

  13. Digne, M., Sautet, P., Raybaud, P., Euzen, P. & Toulhoat, H. Hydroxyl groups on γ-alumina surfaces: A DFT study. J. Catalys. 211, 1–5 (2002).

    Article  CAS  Google Scholar 

  14. Cai, S.H., Rashkeev, S.N., Pantelides, S.T. & Sohlberg, K. Atomic scale mechanism of the transformation of γ-alumina to θ-alumina. Phys. Rev. Lett. 89, 235501 (2002).

    Article  Google Scholar 

  15. Yourdshahyan, Y. et al. Theoretical structure determination of a complex material: κ-Al2O3 . J. Am. Ceram. Soc. 82, 1365 (1999).

    Article  CAS  Google Scholar 

  16. Tasker, P.W. The stability of ionic crystal surfaces. J. Phys. C 12, 4977–4984 (1979).

    Article  CAS  Google Scholar 

  17. Sakashita, Y., Araki, Y. & Shimada, H. Effects of surface orientation of alumina supports on the catalytic functionality of molybdenium sulfide catalysts. Appl. Catal. A 215, 101–110 (2001).

    Article  CAS  Google Scholar 

  18. Nortier, P., Fourre, P., Mohammed Saad, A.B., Saur, O. & Lavalley, J.C. Effects of crystallinity and morphology on the surface properties of alumina. Appl. Catal. 61, 141–160 (1990).

    Article  CAS  Google Scholar 

  19. Beaufils, J.P. & Barbaux, J. Determination, par diffraction differentielle de neutrons, des faces cristallines exposees par des supports de catalyseurs en poudre. J. Chim. Phys. 78, 347–352 (1981).

    Article  CAS  Google Scholar 

  20. Knözniger, H. & Ratnasamy, P. Catalytic aluminas: Surface models and characterization of surface sites. Catal. Rev. Sci. Eng. 17, 31–70 (1978).

    Article  Google Scholar 

  21. Eng, P.J. et al. Structure of the hydrated α-Al2O3 (0001) surface. Science 288, 1029–1033 (2000).

    Article  CAS  Google Scholar 

  22. Kitayama, M. & Gleaser, A.M. The Wulff shape of alumina: III, undoped alumina. J. Am. Ceram. Soc. 85, 611–622 (2002).

    Article  CAS  Google Scholar 

  23. Wang, X.G., Chaka, A. & Scheffler, M. Effect of the environment on α-Al2O3 (0001) surface structures. Phys. Rev. Lett. 84, 3650–3653 (2000).

    Article  CAS  Google Scholar 

  24. Okada, K., Nagashima, T., Kameshima, Y. & Yasumori, A. Effect of crystallite size on the thermal phase change and porous properties of Boehmite. J. Colloid Interface Sci. 248, 111–115 (2002).

    Article  CAS  Google Scholar 

  25. Chuah, G.K., Jaenicke, S. & Xu, T.H. The effect of digestion on the surface area and porosity of alumina. Micropor. Mesopor. Mater. 37, 345–353 (2000).

    Article  CAS  Google Scholar 

  26. Rohrer, G.S., Rohrer, C.L. & Mullins, W.W. Nucleation energy barriers for volume-conserving shape changes of crystals with nonequilibrium morphologies. J. Am. Ceram. Soc. 84, 2099–2104 (2001).

    Article  CAS  Google Scholar 

  27. Hartford, J. Interface energy and electron structure for Fe/VN. Phys. Rev. B 61, 2221–2229 (2000).

    Article  CAS  Google Scholar 

  28. Perdew, J.P. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens K. Nørskov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łodziana, Z., Topsøe, NY. & Nørskov, J. A negative surface energy for alumina. Nature Mater 3, 289–293 (2004). https://doi.org/10.1038/nmat1106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing