Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets

Abstract

The mouse thymus produces discrete γδ T cell subsets that make either interferon-γ (IFN-γ) or interleukin 17 (IL-17), but the role of the T cell antigen receptor (TCR) in this developmental process remains controversial. Here we show that Cd3g+/− Cd3d+/− (CD3 double-haploinsufficient (CD3DH)) mice have reduced TCR expression and signaling strength on γδ T cells. CD3DH mice had normal numbers and phenotypes of αβ thymocyte subsets, but impaired differentiation of fetal Vγ6+ (but not Vγ4+) IL-17-producing γδ T cells and a marked depletion of IFN-γ-producing CD122+ NK1.1+ γδ T cells throughout ontogeny. Adult CD3DH mice showed reduced peripheral IFN-γ+ γδ T cells and were resistant to experimental cerebral malaria. Thus, TCR signal strength within specific thymic developmental windows is a major determinant of the generation of proinflammatory γδ T cell subsets and their impact on pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: γδ T cells from CD3DH mice show reduced TCRγδ expression and signaling.
Figure 2: CD3DH mice show impaired differentiation of IL-17+ and IFN-γ+ γδ T cells within selective windows of TCR Vγ usage.
Figure 3: Transcriptional signatures of TCR signal strength in γδ thymocytes.
Figure 4: CD3DH mice lack IFN-γhiCD122+NK1.1+ thymocytes, which are rescued by CD3 crosslinking in vivo.
Figure 5: CD3DH mice show reduced peripheral IFN-γ+ γδ T cells and are resistant to cerebral malaria.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Wang, T. et al. IFN-γ-producing γδ T cells help control murine West Nile virus infection. J. Immunol. 171, 2524–2531 (2003).

    CAS  PubMed  Google Scholar 

  2. Gao, Y. et al. γδ T cells provide an early source of interferon-γ in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jagannathan, P. et al. Loss and dysfunction of Vδ2+ γδ T cells are associated with clinical tolerance to malaria. Sci. Transl. Med. 6, 251ra117 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Cho, J.S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120, 1762–1773 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Sheridan, B.S. et al. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39, 184–195 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pantelyushin, S. et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai, Y. et al. Differential developmental requirement and peripheral regulation for dermal Vγ4 and Vγ6T17 cells in health and inflammation. Nat. Commun. 5, 3986 (2014).

    CAS  PubMed  Google Scholar 

  9. Park, S.G. et al. T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells. Immunity 33, 791–803 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Romani, L. et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451, 211–215 (2008).

    CAS  PubMed  Google Scholar 

  11. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing γδ T cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    CAS  PubMed  Google Scholar 

  12. Jensen, K.D. et al. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon-γ. Immunity 29, 90–100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  14. Petermann, F. et al. γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33, 351–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Prinz, I., Silva-Santos, B. & Pennington, D.J. Functional development of γδ T cells. Eur. J. Immunol. 43, 1988–1994 (2013).

    CAS  PubMed  Google Scholar 

  16. Ribot, J.C. et al. CD27 is a thymic determinant of the balance between interferon-γ– and interleukin 17-producing γδ T cell subsets. Nat. Immunol. 10, 427–436 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haas, J.D. et al. CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing γδ effector T cells. Eur. J. Immunol. 39, 3488–3497 (2009).

    CAS  PubMed  Google Scholar 

  18. Rei, M. et al. Murine CD27 Vγ6+ γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc. Natl. Acad. Sci. USA 111, E3562–E3570 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, P. et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva-Santos, B., Serre, K. & Norell, H. γδ T cells in cancer. Nat. Rev. Immunol. 15, 683–691 (2015).

    CAS  PubMed  Google Scholar 

  21. Turchinovich, G. & Hayday, A.C. Skint-1 identifies a common molecular mechanism for the development of interferon-γ–secreting versus interleukin-17-secreting γδ T cells. Immunity 35, 59–68 (2011).

    CAS  PubMed  Google Scholar 

  22. Wencker, M. et al. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat. Immunol. 15, 80–87 (2014).

    CAS  PubMed  Google Scholar 

  23. Ciofani, M. & Zúñiga-Pflücker, J.C. Determining γδ versus αβ T cell development. Nat. Rev. Immunol. 10, 657–663 (2010).

    CAS  PubMed  Google Scholar 

  24. Haks, M.C. et al. Attenuation of γδ TCR signaling efficiently diverts thymocytes to the αβ lineage. Immunity 22, 595–606 (2005).

    CAS  PubMed  Google Scholar 

  25. Hayes, S.M., Li, L. & Love, P.E. TCR signal strength influences αβ/γδ lineage fate. Immunity 22, 583–593 (2005).

    CAS  PubMed  Google Scholar 

  26. O'Brien, R.L. & Born, W.K. γδ T cell subsets: a link between TCR and function? Semin. Immunol. 22, 193–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Narayan, K. et al. & Immunological Genome Project Consortium. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Nat. Immunol. 13, 511–518 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Malhotra, N. et al. & Immunological Genome Project Consortium. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 38, 681–693 (2013).

    CAS  PubMed  Google Scholar 

  29. Dave, V.P. et al. CD3δ deficiency arrests development of the αβ but not the γδ T cell lineage. EMBO J. 16, 1360–1370 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Coffey, F. et al. The TCR ligand-inducible expression of CD73 marks γδ lineage commitment and a metastable intermediate in effector specification. J. Exp. Med. 211, 329–343 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Azzam, H.S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Haas, J.D. et al. Development of interleukin-17-producing γδ T cells is restricted to a functional embryonic wave. Immunity 37, 48–59 (2012).

    CAS  PubMed  Google Scholar 

  33. Schmolka, N. et al. Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory γδ T cell subsets. Nat. Immunol. 14, 1093–1100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmolka, N., Wencker, M., Hayday, A.C. & Silva-Santos, B. Epigenetic and transcriptional regulation of γδ T cell differentiation: programming cells for responses in time and space. Semin. Immunol. 27, 19–25 (2015).

    CAS  PubMed  Google Scholar 

  35. Silva-Santos, B., Pennington, D.J. & Hayday, A.C. Lymphotoxin-mediated regulation of γδ cell differentiation by αβ T cell progenitors. Science 307, 925–928 (2005).

    CAS  PubMed  Google Scholar 

  36. Kannan, Y. et al. IκBζ augments IL-12- and IL-18-mediated IFN-γ production in human NK cells. Blood 117, 2855–2863 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gu, X. et al. The gp49B1 inhibitory receptor regulates the IFN-gamma responses of T cells and NK cells. J. Immunol. 170, 4095–4101 (2003).

    CAS  PubMed  Google Scholar 

  38. Ribot, J.C. et al. Cutting edge: adaptive versus innate receptor signals selectively control the pool sizes of murine IFN-γ– or IL-17-producing γδ T cells upon infection. J. Immunol. 185, 6421–6425 (2010).

    CAS  PubMed  Google Scholar 

  39. D'Ombrain, M.C., Hansen, D.S., Simpson, K.M. & Schofield, L. γδ-T cells expressing NK receptors predominate over NK cells and conventional T cells in the innate IFN-γ response to Plasmodium falciparum malaria. Eur. J. Immunol. 37, 1864–1873 (2007).

    CAS  PubMed  Google Scholar 

  40. Hayes, S.M. & Love, P.E. Stoichiometry of the murine γδ T cell receptor. J. Exp. Med. 203, 47–52 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Siegers, G.M. et al. Different composition of the human and the mouse γδ T cell receptor explains different phenotypes of CD3γ and CD3δ immunodeficiencies. J. Exp. Med. 204, 2537–2544 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zapata, D.A. et al. Conformational and biochemical differences in the TCR-CD3 complex of CD8+ versus CD4+ mature lymphocytes revealed in the absence of CD3γ. J. Biol. Chem. 274, 35119–35128 (1999).

    CAS  PubMed  Google Scholar 

  43. Fernández-Malavé, E. et al. Overlapping functions of human CD3δ and mouse CD3γ in αβ T-cell development revealed in a humanized CD3γ-mouse. Blood 108, 3420–3427 (2006).

    PubMed  Google Scholar 

  44. Hayes, S.M. et al. Activation-induced modification in the CD3 complex of the γδ T cell receptor. J. Exp. Med. 196, 1355–1361 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayes, S.M. & Love, P.E. Distinct structure and signaling potential of the γδ TCR complex. Immunity 16, 827–838 (2002).

    CAS  PubMed  Google Scholar 

  46. Roark, C.L. et al. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing γδ T cells. J. Immunol. 179, 5576–5583 (2007).

    CAS  PubMed  Google Scholar 

  47. Seiler, M.P. et al. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat. Immunol. 13, 264–271 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Haks, M.C., Krimpenfort, P., Borst, J. & Kruisbeek, A.M. The CD3γ chain is essential for development of both the TCRαβ and TCRγδ lineages. EMBO J. 17, 1871–1882 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liehl, P. et al. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat. Med. 20, 47–53 (2014).

    CAS  PubMed  Google Scholar 

  50. R Development Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2011).

  51. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Carvalho, B.S. & Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ritchie, M.E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Serre, J. Martins, N. Schmolka, A. Amorim, V.Z. Luís and M.M. Mota (all at iMM Lisboa); and B. Garcillán, D. de Juan, M. Mazariegos, M. Sanz-Rodríguez and S. Diaz-Castroverde (Complutense University) for help and advice; A. Hayday (King's College London) and P. Pereira (Pasteur Institute) for insightful discussions; and the staff of the animal and flow cytometry facilities at iMM Lisboa and Complutense University for technical assistance. This work was funded by the European Research Council (StG_260352 and CoG_646701 to B.S.-S.); MINECO (SAF2011-24235 and BES-2012-055054 to J.R.R.), CAM (S2010/ BMD-2316/2326 to J.R.R.) and the Lair Foundation (2012/0070 to J.R.R.); and FIS PI11/02198 and MINECO SAF2014-54708-R to E.F.-M.

Author information

Authors and Affiliations

Authors

Contributions

M.M.-R., B.S.-S., E.F.-M., J.R.R. and D.J.P. designed research; M.M.-R., J.C.R., A.R.G., N.G.-S. and A.P. performed experiments; B.S.-S., E.F.-M. and J.R.R. supervised research and wrote the manuscript.

Corresponding authors

Correspondence to Edgar Fernández-Malavé or Bruno Silva-Santos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 γδ and αβ T cell development in CD3 mutant mice.

(a) Flow cytometry showing the CD3ɛ vs TCRδ phenotype of thymocytes from adult WT or CD3SH (single heterozygote for CD3δ or CD3γ) mice (n = 3 per group). Numbers within gated areas indicate % cells in each throughout. (b) Left, representative CD3ɛ vs TCRδ phenotype of thymocytes from the indicated adult mice. Numbers as in (a). Right, CD3ε and TCRδ expression (MFI) in gated TCRδ+ thymocytes and CD3+ thymocytes, respectively, from the indicated adult mice (n = 3 per group). Numbers indicate MFI (c) Gating strategy for CD3+ TCRδ+ γδ T cell identification. Doublets and dead cells were excluded. (d, e) Comparative analysis of TCRβ+CD1d+ NKT cells (d) and CD4+Foxp3+ Treg cells (e) in WT and CD3DH mice. Numbers in c, d, and e indicate percentage of cells within the marked region.

Supplementary Figure 2 γδ T cells from CD3DH mice show impaired TCRγδ signaling.

(a) Flow cytometry of phosphorylated AKT (empty histograms) in sorted TCRδ+CD3+CD27+ lymph node cells from the indicated mice, after 5 min stimulation with PMA plus ionomycin; filled histograms represent staining with isotype-matched control antibody. (b) Intracellular calcium mobilization in TCRδ+CD3+CD27+ lymph node cells obtained from the indicated mice, after 5 min stimulation with 10 µg/ml biotinylated anti-CD3ɛ mAb followed by TCR crosslinking with 10 µg/ml streptavidin, and then assessed over 5 min, followed by 2 min stimulation with PMA plus ionomycin.

Supplementary Figure 3 Contributions of WT or CD3DH progenitors to γδ and CD4+ thymocytes in mixed bone marrow chimeras.

Thy-1.1+ (WT-derived) vs Thy-1.2+ (CD3DH-derived) fractions within TCRδ+CD3+ thymocytes (a) and CD4+CD3+ thymocytes (b) from 1:9 mixed WT:CD3DH BM chimeras. Each symbol indicates one individual host, either RAG2−/− (squares) or TCRδ−/− (triangles). *P < 0.01, **P < 0.001 (Student’s t-test). Data are from three independent experiments.

Supplementary Figure 4 Transcriptional signatures of Vγ-based γδ thymocyte subsets.

Relative expression of Egr3, Id2, Id3 and Gp49b (a) or Sox4, Sox13, Bcl11b and Blk (b), in arbitrary units normalized to the housekeeping gene hprt, in sorted Vγ1+, Vγ4+ or Vγ1Vγ4 thymocytes from either WT or CD3DH E18 embryos. Data shown are the mean +/− s.d.

Supplementary Figure 5 CD4+ T cells from CD3DH mice differentiate normally into TH1 cells.

(a) Flow cytometry of intracellular IFN-γ expression of WT (top) and CD3DH (bottom) TCRβ+CD4+ splenocytes incubated for 4 days without stimuli (left panels) or on plate-bound α-CD3ɛ and α-CD28 mAb (5ng/ml each), without (middle panels) or with (right panels) Th1-polarizing cytokines IL-2 (10 ng/ml) and IL-12 (50 ng/ml) plus anti-IL-4 (10 µg/mL) neutralizing antibody. Numbers indicate % of cells in each quadrant. Data are representative of two independent experiments.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Ruiz, M., Ribot, J., Grosso, A. et al. TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets. Nat Immunol 17, 721–727 (2016). https://doi.org/10.1038/ni.3424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3424

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing