Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signaling by Fyn-ADAP via the Carma1–Bcl-10–MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells

A Corrigendum to this article was published on 21 January 2014

This article has been updated

Abstract

Inflammation is a critical component of the immune response. However, acute or chronic inflammation can be highly destructive. Uncontrolled inflammation forms the basis for allergy, asthma and various autoimmune disorders. Here we identified a signaling pathway that was exclusively responsible for the production of inflammatory cytokines but not for cytotoxicity. Recognition of tumor cells expressing the NK cell–activatory ligands H60 or CD137L by mouse natural killer (NK) cells led to efficient cytotoxicity and the production of inflammatory cytokines. Both of those effector functions required the kinases Lck, Fyn and PI(3)K (subunits p85α and p110δ) and the signaling protein PLC-γ2. However, a complex of Fyn and the adaptor ADAP exclusively regulated the production of inflammatory cytokines but not cytotoxicity in NK cells. That unique function of ADAP required a Carma1–Bcl-10–MAP3K7 signaling axis. Our results have identified molecules that can be targeted to regulate inflammation without compromising NK cell cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD137 functions as an independent activation receptor in NK cells.
Figure 2: Lck is crucial in CD137-mediated signaling.
Figure 3: Fyn has a critical role in mediating the effector function of NK cells.
Figure 4: The PI(3)K subunits p85α and p110δ are essential for the cytotoxicity and cytokine production of NK cells.
Figure 5: ADAP is essential for the cytokine production but not for the cytotoxicity of NK cells.
Figure 6: Carma1 is essential for the cytotoxicity and cytokine production of NK cells.
Figure 7: MAP3K7 links Carma1 to the CD137-mediated effector function of NK cells.
Figure 8: ADAP is essential for the cytokine production but not for the cytotoxicity of human NK cells.

Similar content being viewed by others

Change history

  • 23 September 2013

    In the version of this article initially published online, the affiliation of author Bart Vanhaesebroeck was incorrect. The correct affiliation is as follows: Center for Cell Signaling, Barts Cancer Institute, Queen Mary University of London, London, UK. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Billadeau, D.D., Upshaw, J.L., Schoon, R.A., Dick, C.J. & Leibson, P.J. NKG2D–DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat. Immunol. 4, 557–564 (2003).

    CAS  PubMed  Google Scholar 

  2. Wu, J., Cherwinski, H., Spies, T., Phillips, J.H. & Lanier, L.L. DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J. Exp. Med. 192, 1059–1068 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zompi, S. et al. NKG2D triggers cytotoxicity in mouse NK cells lacking DAP12 or Syk family kinases. Nat. Immunol. 4, 565–572 (2003).

    CAS  PubMed  Google Scholar 

  4. Myers, L.M. & Vella, A.T. Interfacing T-cell effector and regulatory function through CD137 (4–1BB) co-stimulation. Trends Immunol. 26, 440–446 (2005).

    CAS  PubMed  Google Scholar 

  5. Wilcox, R.A., Tamada, K., Strome, S.E. & Chen, L. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J. Immunol. 169, 4230–4236 (2002).

    CAS  PubMed  Google Scholar 

  6. Kim, Y.J. et al. Novel T cell antigen 4–1BB associates with the protein tyrosine kinase p56lck1. J. Immunol. 151, 1255–1262 (1993).

    CAS  PubMed  Google Scholar 

  7. Sabbagh, L., Pulle, G., Liu, Y., Tsitsikov, E.N. & Watts, T.H. ERK-dependent Bim modulation downstream of the 4–1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J. Immunol. 180, 8093–8101 (2008).

    CAS  PubMed  Google Scholar 

  8. Cannons, J.L., Choi, Y. & Watts, T.H. Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4–1BB-dependent immune response. J. Immunol. 165, 6193–6204 (2000).

    CAS  PubMed  Google Scholar 

  9. Regunathan, J., Chen, Y., Wang, D. & Malarkannan, S. NKG2D receptor-mediated NK cell function is regulated by inhibitory Ly49 receptors. Blood 105, 233–240 (2005).

    CAS  PubMed  Google Scholar 

  10. Suzuki, I. & Fink, P.J. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J. Exp. Med. 187, 123–128 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Filipp, D. et al. Regulation of Fyn through translocation of activated Lck into lipid rafts. J. Exp. Med. 197, 1221–1227 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kapeller, R. et al. Identification of two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase. J. Biol. Chem. 269, 1927–1933 (1994).

    CAS  PubMed  Google Scholar 

  13. Vanhaesebroeck, B. et al. P110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl. Acad. Sci. USA 94, 4330–4335 (1997).

    CAS  PubMed  Google Scholar 

  14. Min, L., Joseph, R.E., Fulton, D.B. & Andreotti, A.H. Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCγ1. Proc. Natl. Acad. Sci. USA 106, 21143–21148 (2009).

    CAS  PubMed  Google Scholar 

  15. Medeiros, R.B. et al. Regulation of NF-κB activation in T cells via association of the adapter proteins ADAP and CARMA1. Science 316, 754–758 (2007).

    CAS  PubMed  Google Scholar 

  16. Peterson, E.J. et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293, 2263–2265 (2001).

    CAS  PubMed  Google Scholar 

  17. May, R.M. et al. Murine natural killer immunoreceptors use distinct proximal signaling complexes to direct cell function. Blood 121, 3135–3146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Newton, K. & Dixit, V.M. Mice lacking the CARD of CARMA1 exhibit defective B lymphocyte development and impaired proliferation of their B and T lymphocytes. Curr. Biol. 13, 1247–1251 (2003).

    CAS  PubMed  Google Scholar 

  19. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6, 1087–1095 (2005).

    CAS  PubMed  Google Scholar 

  20. Baessler, T. et al. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood 115, 3058–3069 (2010).

    CAS  PubMed  Google Scholar 

  21. Filipp, D. et al. Lck-dependent Fyn activation requires C terminus-dependent targeting of kinase-active Lck to lipid rafts. J. Biol. Chem. 283, 26409–26422 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong, Z. et al. The adaptor SAP controls NK cell activation by regulating the enzymes Vav-1 and SHIP-1 and by enhancing conjugates with target cells. Immunity 36, 974–985 (2012).

    CAS  PubMed  Google Scholar 

  23. Manciulea, M. et al. Divergent phosphotyrosine signaling via FcγRIIIA on human NK cells. Cell. Immunol. 167, 63–71 (1996).

    CAS  PubMed  Google Scholar 

  24. Biondi, A. et al. Expression of lineage-restricted protein tyrosine kinase genes in human natural killer cells. Eur. J. Immunol. 21, 843–846 (1991).

    CAS  PubMed  Google Scholar 

  25. Kudlacz, E.M. et al. Genetic ablation of the src kinase p59fynT exacerbates pulmonary inflammation in an allergic mouse model. Am. J. Respir. Cell Mol. Biol. 24, 469–474 (2001).

    CAS  PubMed  Google Scholar 

  26. Mason, L.H., Willette-Brown, J., Taylor, L.S. & McVicar, D.W. Regulation of Ly49D/DAP12 signal transduction by Src-family kinases and CD45. J. Immunol. 176, 6615–6623 (2006).

    CAS  PubMed  Google Scholar 

  27. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    CAS  PubMed  Google Scholar 

  28. Susa, M., Rohner, D. & Bichsel, S. Differences in binding of PI 3-kinase to the src-homology domains 2 and 3 of p56 lck and p59 fyn tyrosine kinases. Biochem. Biophys. Res. Commun. 220, 729–734 (1996).

    CAS  PubMed  Google Scholar 

  29. Prasad, K.V. et al. Src-homology 3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells. Proc. Natl. Acad. Sci. USA 90, 7366–7370 (1993).

    CAS  PubMed  Google Scholar 

  30. Karnitz, L.M., Sutor, S.L. & Abraham, R.T. The Src-family kinase, Fyn, regulates the activation of phosphatidylinositol 3-kinase in an interleukin 2-responsive T cell line. J. Exp. Med. 179, 1799–1808 (1994).

    CAS  PubMed  Google Scholar 

  31. Guo, H., Samarakoon, A., Vanhaesebroeck, B. & Malarkannan, S. The p110δ of PI3K plays a critical role in NK cell terminal maturation and cytokine/chemokine generation. J. Exp. Med. 205, 2419–2435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, N. et al. The p110δ catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood 110, 3202–3208 (2007).

    CAS  PubMed  Google Scholar 

  33. Lee, K.Y., D'Acquisto, F., Hayden, M.S., Shim, J.H. & Ghosh, S. PDK1 nucleates T cell receptor-induced signaling complex for NF-κB activation. Science 308, 114–118 (2005).

    CAS  PubMed  Google Scholar 

  34. Regunathan, J. et al. Differential and nonredundant roles of phospholipase Cγ2 and phospholipase Cγ1 in the terminal maturation of NK cells. J. Immunol. 177, 5365–5376 (2006).

    CAS  PubMed  Google Scholar 

  35. Liu, J. et al. FYB (FYN binding protein) serves as a binding partner for lymphoid protein and FYN kinase substrate SKAP55 and a SKAP55-related protein in T cells. Proc. Natl. Acad. Sci. USA 95, 8779–8784 (1998).

    CAS  PubMed  Google Scholar 

  36. Srivastava, R., Burbach, B.J. & Shimizu, Y. NF-kappaB activation in T cells requires discrete control of IκB kinase α/β (IKKα/β) phosphorylation and IKKγ ubiquitination by the ADAP adapter protein. J. Biol. Chem. 285, 11100–11105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fostel, L.V., Dluzniewska, J., Shimizu, Y., Burbach, B.J. & Peterson, E.J. ADAP is dispensable for NK cell development and function. Int. Immunol. 18, 1305–1314 (2006).

    CAS  PubMed  Google Scholar 

  38. Chen, X., Trivedi, P.P., Ge, B., Krzewski, K. & Strominger, J.L. Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc. Natl. Acad. Sci. USA 104, 6329–6334 (2007).

    CAS  PubMed  Google Scholar 

  39. Li, C. et al. JNK MAP kinase activation is required for MTOC and granule polarization in NKG2D-mediated NK cell cytotoxicity. Proc. Natl. Acad. Sci. USA 105, 3017–3022 (2008).

    CAS  PubMed  Google Scholar 

  40. Colucci, F. et al. Functional dichotomy in natural killer cell signaling: Vav1-dependent and -independent mechanisms. J. Exp. Med. 193, 1413–1424 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation. Nat. Immunol. 3, 836–843 (2002).

    CAS  PubMed  Google Scholar 

  42. Rajasekaran, K. et al. Transforming growth factor-β-activated kinase 1 regulates natural killer cell-mediated cytotoxicity and cytokine production. J. Biol. Chem. 286, 31213–31224 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Blonska, M. et al. The CARMA1-Bcl10 signaling complex selectively regulates JNK2 kinase in the T cell receptor-signaling pathway. Immunity 26, 55–66 (2007).

    CAS  PubMed  Google Scholar 

  44. Murphy, L.O., Smith, S., Chen, R.H., Fingar, D.C. & Blenis, J. Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol. 4, 556–564 (2002).

    CAS  PubMed  Google Scholar 

  45. Wang, W., Zhou, G., Hu, M.C., Yao, Z. & Tan, T.H. Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-Jun N-terminal kinase (JNK) pathway by transforming growth factor beta (TGF-β)-activated kinase (TAK1), a kinase mediator of TGF β signal transduction. J. Biol. Chem. 272, 22771–22775 (1997).

    CAS  PubMed  Google Scholar 

  46. Okkenhaug, K. et al. The p110δ isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J. Immunol. 177, 5122–5128 (2006).

    CAS  PubMed  Google Scholar 

  47. Egawa, T. et al. Requirement for CARMA1 in antigen receptor-induced NF-κB activation and lymphocyte proliferation. Curr. Biol. 13, 1252–1258 (2003).

    CAS  PubMed  Google Scholar 

  48. Tang, M. et al. TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice. J. Exp. Med. 205, 1611–1619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mason, L.H. et al. The Ly-49D receptor activates murine natural killer cells. J. Exp. Med. 184, 2119–2128 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Malarkannan, S. et al. Differences that matter: major cytotoxic T cell-stimulating minor histocompatibility antigens. Immunity 13, 333–344 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Sammarco and her Lulu's Lemonade Stand for support through Blood Center's Research Foundation, inspiration and motivation; K.E. Nichols (Children's Hospital, Philadelphia) for Adap−/− mice; D.R. Littman (New York University) for Carma1−/− mice; J. Zhang and Y. Xiao (Loyola University Chicago Stritch School of Medicine) for Map3k7fl/fl and Map3k7fl/flMx1-Cre spleens; Y. Chen and B. Ren (Blood Research Institute, Milwaukee) for wild-type and Fyn−/− spleens; V. Arumugam and T. Foster for technical help; and T. Heil, L. Savatski, P.J. Newman and Q. Shi for critical reading. Supported by the US National Institutes of Health (R01 A1064828 and R01 AI102893 to S.M.), the American Cancer Society (S.M. and M.S.T.), Midwest Athletes Against Childhood Cancer Fund (M.S.T. and S.M.) and Hyundai Hope on Wheels (M.S.T.).

Author information

Authors and Affiliations

Authors

Contributions

K.R. designed and executed analysis of the cytotoxic potential and production of inflammatory cytokines of Fyn−/−, p110δ(D910A), Adap−/−, Carma1−/− and Carma1(ΔCARD) NK cells (freshly isolated or cultured with IL-2), did various NK cell–activation assays, prepared cell lysates, did immunoblot analysis and immunoprecipitation assays, purified human primary NK cells and used them for siRNA treatment and functional analyses, and helped in revising the manuscript; P.K. designed siRNA and knocked down various mouse signaling proteins; K.M.S. maintained various animal colonies and prepared NK cells (freshly isolated or cultured with IL-2) for studies; V.D. provided Carma1(ΔCARD) mice; E.J.P. provided Adap−/− spleens and discussed the data; B.V. provided p110δ(D910A) mice; E.J.P. and B.V. helped in the final editing of the manuscript; M.S.T. helped in the preparation of the manuscript; and S.M. conceived of the study, designed experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Subramaniam Malarkannan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1580 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajasekaran, K., Kumar, P., Schuldt, K. et al. Signaling by Fyn-ADAP via the Carma1–Bcl-10–MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells. Nat Immunol 14, 1127–1136 (2013). https://doi.org/10.1038/ni.2708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing