Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production

Abstract

Natural killer (NK) cells participate in early immune defenses against pathogens and tumors and play a major role as immune effector and regulatory cells. The NK cell-mediated elimination of an infected or cancerous cell is a highly regulated process that requires the formation of a cell contact, the establishment of an immunological synapse and the polarization and release of lytic granules. Additionally, the detachment of NK cells from target cells is important for NK cells to bind and kill other cells in a process called serial killing. However, very little is known about this detachment process. Here, we show that NK detachment is directly connected to the successful killing of a target cell. The inhibition of killing due to reduced NK cell cytotoxicity or increased target cell resistance results in defective detachment and prolonged contact times. This effect leads to sustained Ca2+ flux in NK cells and the hypersecretion of proinflammatory cytokines. Linking defective cytotoxicity with enhanced cytokine secretion via reduced detachment may explain inflammatory pathologies in several diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caligiuri, M. A. Human natural killer cells. Blood 112, 461–469 (2008).

    Article  CAS  Google Scholar 

  2. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  Google Scholar 

  3. London, L., Perussia, B. & Trinchieri, G. Induction of proliferation in vitro of resting human natural killer cells: IL 2 induces into cell cycle most peripheral blood NK cells, but only a minor subset of low density T cells. J. Immunol. 137, 3845–3854 (1986).

    CAS  PubMed  Google Scholar 

  4. Parrish-Novak, J. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–63 (2000).

    Article  CAS  Google Scholar 

  5. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  Google Scholar 

  6. Davis, D. M. et al. The human natural killer cell immune synapse. Proc. Natl Acad. Sci. USA 96, 15062–15067 (1999).

    Article  CAS  Google Scholar 

  7. Hoffmann, S. C., Cohnen, A., Ludwig, T. & Watzl, C. 2B4 engagement mediates rapid LFA-1 and actin-dependent NK cell adhesion to tumor cells as measured by single cell force spectroscopy. J. Immunol. 186, 2757–2764 (2011).

    Article  CAS  Google Scholar 

  8. Urlaub, D., Hofer, K., Muller, M. L. & Watzl, C. LFA-1 activation in NK cells and their subsets: influence of receptors, maturation, and cytokine stimulation. J. Immunol. 198, 1944–1951 (2017).

    Article  CAS  Google Scholar 

  9. Watzl, C. How to trigger a killer: modulation of natural killer cell reactivity on many levels. Adv. Immunol. 124, 137–170 (2014).

    Article  Google Scholar 

  10. Mace, E. M. et al. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol. Cell Biol. 92, 245–255 (2014).

    Article  CAS  Google Scholar 

  11. Prager, I. & Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 105, 1319–1329 (2019).

  12. Cohnen, A. et al. Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood 122, 1411–1418 (2013).

    Article  CAS  Google Scholar 

  13. Choi, P. J. & Mitchison, T. J. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells. Proc. Natl Acad. Sci. USA 110, 6488–6493 (2013).

    Article  CAS  Google Scholar 

  14. Vanherberghen, B. et al. Classification of human natural killer cells based on migration behavior and cytotoxic response. Blood 121, 1326–1334 (2013).

    Article  CAS  Google Scholar 

  15. Bhat, R. & Watzl, C. Serial killing of tumor cells by human natural killer cells-enhancement by therapeutic antibodies. PLoS ONE 2, e326 (2007).

    Article  Google Scholar 

  16. Prager, I. et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J. Exp. Med. 216, (2019). https://doi.org/10.1084/jem.20181454.

  17. Li, P., Katirai, F., Zheng, F. & Gong, F. Recycling and reutilization of cytotoxic molecules, a new type of energy conservation of NK cells? Med. Hypotheses 76, 293–295 (2011).

    Article  CAS  Google Scholar 

  18. Liu, D. et al. Rapid biogenesis and sensitization of secretory lysosomes in NK cells mediated by target-cell recognition. Proc. Natl. Acad. Sci. USA 102, 123–127 (2005).

    Article  CAS  Google Scholar 

  19. Netter, P., Anft, M. & Watzl, C. Termination of the activating NK cell immunological synapse is an active and regulated process. J. Immunol. 199, 2528–2535 (2017).

    Article  CAS  Google Scholar 

  20. Jenkins, M. R. et al. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J. Exp. Med. 212, 307–317 (2015).

    Article  CAS  Google Scholar 

  21. Konjar, S. et al. Human and mouse perforin are processed in part through cleavage by the lysosomal cysteine proteinase cathepsin L. Immunology 131, 257–267 (2010).

    Article  CAS  Google Scholar 

  22. Kataoka, T. et al. Acidification is essential for maintaining the structure and function of lytic granules of CTL. Effect of concanamycin A, an inhibitor of vacuolar type H(+)-ATPase, on CTL-mediated cytotoxicity. J. Immunol. 153, 3938–3947 (1994).

    CAS  PubMed  Google Scholar 

  23. Kataoka, T. et al. Concanamycin A, a powerful tool for characterization and estimation of contribution of perforin- and Fas-based lytic pathways in cell-mediated cytotoxicity. J. Immunol. 156, 3678–3686 (1996).

    CAS  PubMed  Google Scholar 

  24. Bird, C. H. et al. Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol. Cell Biol. 18, 6387–6398 (1998).

    Article  CAS  Google Scholar 

  25. Sandusky, M. M., Messmer, B. & Watzl, C. Regulation of 2B4 (CD244)-mediated NK cell activation by ligand-induced receptor modulation. Eur. J. Immunol. 36, 3268–3276 (2006).

    Article  CAS  Google Scholar 

  26. Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702 (2007).

    Article  CAS  Google Scholar 

  27. Voskoboinik, I. et al. Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J. Biol. Chem. 280, 8426–8434 (2005).

    Article  CAS  Google Scholar 

  28. Praper, T. et al. Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH. Mol. Immunol. 47, 2492–2504 (2010).

    Article  CAS  Google Scholar 

  29. Kaiser, B. K. et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447, 482–486 (2007).

    Article  CAS  Google Scholar 

  30. Boutet, P. et al. Cutting edge: the metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J. Immunol. 182, 49–53 (2009).

    Article  CAS  Google Scholar 

  31. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    Article  CAS  Google Scholar 

  32. Waldhauer, I. et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 68, 6368–6376 (2008).

    Article  CAS  Google Scholar 

  33. Schlecker, E. et al. Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res. 74, 3429–3440 (2014).

    Article  CAS  Google Scholar 

  34. Srpan, K. et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J. Cell Biol. 217, 3267–3283 (2018).

    Article  CAS  Google Scholar 

  35. Abram, C. L. & Lowell, C. A. The ins and outs of leukocyte integrin signaling. Annu. Rev. Immunol. 27, 339–362 (2009).

    Article  CAS  Google Scholar 

  36. Bunnell, S. C., Kapoor, V., Trible, R. P., Zhang, W. & Samelson, L. E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14, 315–329 (2001).

    Article  CAS  Google Scholar 

  37. Furukawa, R. et al. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J. Cell Sci. 116(Pt 1), 187–196 (2003).

    Article  CAS  Google Scholar 

  38. Henter, J. I. et al. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood 78, 2918–2922 (1991).

    Article  CAS  Google Scholar 

  39. Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    Article  CAS  Google Scholar 

  40. Wensveen, F. M. et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16, 376–385 (2015).

    Article  CAS  Google Scholar 

  41. Messmer, B., Eissmann, P., Stark, S. & Watzl, C. CD48 stimulation by 2B4 (CD244)-expressing targets activates human NK cells. J. Immunol. 176, 4646–4650 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Clarissa Liesche for the serpinB9 cDNA and all members of our lab for their help and discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.A., P.N., D.U., I.P. and S.S. performed the experiments; M.A., P.N. and C.W. planned the experiments and analyzed the data; and M.A. and C.W. wrote the manuscript.

Corresponding author

Correspondence to Carsten Watzl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anft, M., Netter, P., Urlaub, D. et al. NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cell Mol Immunol 17, 347–355 (2020). https://doi.org/10.1038/s41423-019-0277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0277-2

Keywords

This article is cited by

Search

Quick links