Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation

Abstract

MicroRNAs are key regulators of many biological processes, including cell differentiation. Here we show that during human monocyte-macrophage differentiation, expression of the microRNAs miR-223, miR-15a and miR-16 decreased considerably, which led to higher expression of the serine-threonine kinase IKKα in macrophages. In macrophages, higher IKKα expression in conjunction with stabilization of the kinase NIK induced larger amounts of p52. Because of low expression of the transcription factor RelB in untreated macrophages, high p52 expression repressed basal transcription of both canonical and noncanonical NF-κB target genes. However, proinflammatory stimuli in macrophages resulted in greater induction of noncanonical NF-κB target genes. Thus, a decrease in certain microRNAs probably prevents macrophage hyperactivation yet primes the macrophage for certain responses to proinflammatory stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upregulation of IKKα during monocyte differentiation.
Figure 2: Targeting of IKKα mRNA by miRNAs.
Figure 3: Mutation of miRNA targeting sites attenuates the inhibitory effect of miRNA mimics.
Figure 4: IKKα mRNA stability is diminished by miRNA mimics.
Figure 5: Constitutive processing of p100 to p52 in macrophages.
Figure 6: Relative contributions of IKKα and NIK to p52 demonstrated by siRNA knockdown.
Figure 7: IKKα-targeting miRNAs affect the expression of noncanonical and canonical NF-κB genes.

Similar content being viewed by others

References

  1. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Beinke, S. & Ley, S.C. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem. J. 382, 393–409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Xiao, G., Harhaj, E.W. & Sun, S.C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Xiao, G., Fong, A. & Sun, S.C. Induction of p100 processing by NF-κB-inducing kinase involves docking IκB kinase α (IKKα) to p100 and IKKα-mediated phosphorylation. J. Biol. Chem. 279, 30099–30105 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Zarnegar, B.J. et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat. Immunol. 9, 1371–1378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nat. Immunol. 9, 1364–1370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baltimore, D. et al. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol. 9, 839–845 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Petrocca, F. & Lieberman, J. Micromanagers of immune cell fate and function. Adv. Immunol. 102, 227–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Kluiver, J., Kroesen, B.J., Poppema, S. & van den Berg, A. The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 20, 1931–1936 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fairweather, D. & Cihakova, D. Alternatively activated macrophages in infection and autoimmunity. J. Autoimmun. 33, 222–230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Johnnidis, J.B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, H., Kalota, A., Jin, S. & Gewirtz, A.M. The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 113, 505–516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Betel, D. et al. The microRNA.org resource: targets and expression. Nucleic Acids Res. 36, D149–D153 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Saetrom, P. et al. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res. 35, 2333–2342 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Bonizzi, G. et al. Activation of IKKα target genes depends on recognition of specific κB binding sites by RelB:p52 dimers. EMBO J. 23, 4202–4210 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rauert, H.etal. Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J. Biol. Chem. 285, 7394–7404 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Bren, G.D. et al. Transcription of the RelB gene is regulated by NF-κB. Oncogene 20, 7722–7733 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence, T. et al. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Li, Q. et al. Enhanced NF-κB activation and cellular function in macrophages lacking IκB kinase 1 (IKK1). Proc. Natl. Acad. Sci. USA 102, 12425–12430 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneemann, M. & Schoeden, G. Macrophage biology and immunology: man is not a mouse. J. Leukoc. Biol. 81, 579 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Aqeilan, R.I., Calin, G.A. & Croce, C.M. miR-15a and miR-16–1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17, 215–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Luo, J.L. et al. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 446, 690–694 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Bonci, D. et al. The miR-15a-miR-16–1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med. 14, 1271–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hashimoto, S.I., Komuro, I., Yamada, M. & Akagawa, K.S. IL-10 inhibits granulocyte-macrophage colony-stimulating factor-dependent human monocyte survival at the early stage of the culture and inhibits the generation of macrophages. J. Immunol. 167, 3619–3625 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Komuro, I., Yasuda, T., Iwamoto, A. & Akagawa, K.S. Catalase plays a critical role in the CSF-independent survival of human macrophages via regulation of the expression of BCL-2 family. J. Biol. Chem. 280, 41137–41145 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. McDonald, P.P., Bald, A. & Cassatella, M.A. Activation of the NF-κB pathway by inflammatory stimuli in human neutrophils. Blood 89, 3421–3433 (1997).

    CAS  PubMed  Google Scholar 

  36. Grossmann, M. et al. The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc. Natl. Acad. Sci. USA 96, 11848–11853 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bours, V. et al. The oncoprotein Bcl-3 directly transactivates through κB motifs via association with DNA-binding p50B homodimers. Cell 72, 729–739 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto, M. et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430, 218–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bosisio, D. et al. A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-κB-dependent gene activity. EMBO J. 25, 798–810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Basak, S., Shih, V.F. & Hoffmann, A. Generation and activation of multiple dimeric transcription factors within the NF-κB signaling system. Mol. Cell. Biol. 28, 3139–3150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Preclinical Repository of the National Cancer Institute for the antibody to the p100 C terminus and the National Institutes of Health Blood Bank for elutriated monocytes. Supported by the Intramural Research Program of The Center for Cancer Research, National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

T.L. and M.J.M. contributed equally to this work and are listed alphabetically; all authors contributed throughout each stage of the development of the manuscript (conception, design, experiments and analysis).

Corresponding authors

Correspondence to You-Sun Kim or Zheng-gang Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 1800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Morgan, M., Choksi, S. et al. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation. Nat Immunol 11, 799–805 (2010). https://doi.org/10.1038/ni.1918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing