Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Denitrification in the Mississippi River network controlled by flow through river bedforms

Abstract

Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters1,2,3,4. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions5,6,7,8,9,10. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater—hyporheic zones8,11,12. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed—and thus vertical hyporheic exchange—would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Average number of hyporheic excursions that a parcel of water experiences over a kilometre of channel.
Figure 2: Median hyporheic residence time (τ50).
Figure 3: Reaction significance factor for denitrification (RSFdn).

Similar content being viewed by others

References

  1. McIsaac, G. F., David, M. B., Gertner, G. Z. & Goolsby, D. A. Eutrophication: Nitrate flux in the Mississippi River. Nature 414, 166–167 (2001).

    Article  Google Scholar 

  2. Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Gulf of Mexico Hypoxia A.K.A. ‘The Dead Zone’. Annu. Rev. Ecol. Syst. 33, 235–263 (2002).

    Article  Google Scholar 

  3. Mulholland, P. et al. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452, 202–205 (2008).

    Article  Google Scholar 

  4. Woodward, G. et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336, 1438–1440 (2012).

    Article  Google Scholar 

  5. Dahm, C., Grimm, N., Marmonier, P., Valett, H. & Vervier, P. Nutrient dynamics at the interface between surface waters and groundwaters. Freshwat. Biol. 40, 427–451 (2002).

    Article  Google Scholar 

  6. Seitzinger, S. et al. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 16, 2064–2090 (2006).

    Article  Google Scholar 

  7. Burgin, A. J. & Hamilton, S. K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5, 89–96 (2007).

    Article  Google Scholar 

  8. Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geosci. 1, 95–100 (2008).

    Article  Google Scholar 

  9. Trimmer, M. et al. River bed carbon and nitrogen cycling: State of play and some new directions. Sci. Tot. Environ. 434, 143–158 (2012).

    Article  Google Scholar 

  10. Findlay, S. Importance of surface–subsurface exchange in stream ecosystems: The hyporheic zone. Limnol. Oceanogr. 40, 159–164 (1995).

    Article  Google Scholar 

  11. Helton, A. M. et al. Thinking outside the channel: Modeling nitrogen cycling in networked river ecosystems. Front. Ecol. Environ. 9, 229–238 (2010).

    Article  Google Scholar 

  12. Boano, F. et al. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Rev. Geophys. 52, 2012RG000417 (2014).

    Article  Google Scholar 

  13. Fischer, H., Kloep, F., Wilzcek, S. & Pusch, M. T. A river’s liver—microbial processes within the hyporheic zone of a large lowland river. Biogeochemistry 76, 349–371 (2005).

    Article  Google Scholar 

  14. McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).

    Article  Google Scholar 

  15. Gandy, C., Smith, J. & Jarvis, A. Attenuation of mining-derived pollutants in the hyporheic zone: A review. Sci. Tot. Environ. 373, 435–446 (2007).

    Article  Google Scholar 

  16. Harvey, J. W. & Fuller, C. C. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. Wat. Resour. Res. 34, 623–636 (1998).

    Article  Google Scholar 

  17. Böhlke, J. K. et al. Multi-scale measurements and modeling of denitrification in streams with varying flow and nitrate concentration in the upper Mississippi River basin, USA. Biogeochemistry 93, 117–141 (2009).

    Article  Google Scholar 

  18. Ward, A. S. et al. Hydrologic and geomorphic controls on hyporheic exchange during base flow recession in a headwater mountain stream. Wat. Resour. Res. 48, W04513 (2012).

    Google Scholar 

  19. Kiel, B. A. & Cardenas, M. B. Lateral hyporheic exchange throughout the Mississippi River network. Nature Geosci. 7, 413–417 (2014).

    Article  Google Scholar 

  20. Gomez-Velez, J. D. & Harvey, J. W. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins. Geophys. Res. Lett. 41, 6403–6412 (2014).

    Article  Google Scholar 

  21. Zarnetske, J. P., Haggerty, R., Wondzell, S. M. & Baker, M. A. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. J. Geophys. Res. 116, G01025 (2011).

    Google Scholar 

  22. Harvey, J. W., Böhlke, J. K., Voytek, M. A., Scott, D. & Tobias, C. R. Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance. Wat. Resour. Res. 49, 6298–6316 (2013).

    Article  Google Scholar 

  23. Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A. & González-Pinzón, R. Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Wat. Resour. Res. 48, W11508 (2012).

    Google Scholar 

  24. Zarnetske, J. P., Haggerty, R., Wondzell, S. M. & Baker, M. A. Labile dissolved organic carbon supply limits hyporheic denitrification. J. Geophys. Res. 116, G04036 (2011).

    Google Scholar 

  25. Gomez, J. D., Wilson, J. L. & Cardenas, M. B. Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects. Wat. Resour. Res. 48, W09533 (2012).

    Article  Google Scholar 

  26. Pinay, G., O’Keefe, T. C., Edwards, R. T. & Naiman, R. J. Nitrate removal in the hyporheic zone of a salmon river in Alaska. River Res. Appl. 25, 367–375 (2009).

    Article  Google Scholar 

  27. Robertson, D. M., Schwarz, G. E., Saad, D. A. & Alexander, R. B. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds. J. Am. Wat. Resour. Assoc. 45, 534–549 (2009).

    Article  Google Scholar 

  28. Alexander, R. B., Smith, R. A. & Schwarz, G. E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403, 758–761 (2000).

    Article  Google Scholar 

  29. Alexander, R. B. et al. Differences in phosphorus and nitrogen delivery to The Gulf of Mexico from the Mississippi River basin. Environ. Sci. Technol. 42, 822–830 (2008).

    Article  Google Scholar 

  30. Hester, E. T. & Gooseff, M. N. in Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools (eds Simon, A., Bennett, B. & Castro, J.) Vol. 194, 167–187 (American Geophysical Union, 2011).

    Google Scholar 

  31. Hynes, H. B. N. Groundwater and stream ecology. Hydrobiologia 100, 93–99 (1983).

    Article  Google Scholar 

  32. Hakenkamp, C. C., Valett, H. M. & Boulton, A. J. Perspectives on the hyporheic zone: Integrating hydrology and biology. Concluding remarks. J. North Am. Benthol. Soc. 12, 94–99 (1993).

    Article  Google Scholar 

  33. Scott, D. W. Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley, 2015).

    Book  Google Scholar 

  34. Robert, C. & Casella, G. Monte Carlo Statistical Methods (Springer, 2005).

    Google Scholar 

  35. Genz, A. Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Stat. Comput. 14, 251–260 (2004).

    Article  Google Scholar 

  36. Montgomery, D. R. & Buffington, J. M. Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 109, 596–611 (1997).

    Article  Google Scholar 

  37. Buffington, J. M., Montgomery, D. R. & Greenberg, H. M. Basin-scale availability of salmonid spawning gravel as influenced by channel type and hydraulic roughness in mountain catchments. Can. J. Fish. Aquat. Sci. 61, 2085–2096 (2004).

    Article  Google Scholar 

  38. Flores, A. N., Bledsoe, B. P., Cuhaciyan, C. O. & Wohl, E. E. Channel-reach morphology dependence on energy, scale, and hydroclimatic processes with implications for prediction using geospatial data. Wat. Resour. Res. 42, W06412 (2006).

    Article  Google Scholar 

  39. Bridge, J. S. Rivers and Floodplains: Forms, Processes, and Sedimentary Record (Wiley, 2009).

    Google Scholar 

  40. Elliott, A. H. & Brooks, N. H. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Wat. Resour. Res. 33, 123–136 (1997).

    Article  Google Scholar 

  41. Wörman, A., Packman, A. I., Marklund, L., Harvey, J. W. & Stone, S. H. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophys. Res. Lett. 34, L07402 (2007).

    Article  Google Scholar 

  42. Cardenas, M. B. A model for lateral hyporheic flow based on valley slope and channel sinuosity. Wat. Resour. Res. 45, W01501 (2009).

    Google Scholar 

  43. Bear, J. Dynamics of Fluids in Porous Media (American Elsevier Publishing, 1972).

    Google Scholar 

  44. Stonedahl, S. H., Harvey, J. W., Wörman, A., Salehin, M. & Packman, A. I. A multiscale model for integrating hyporheic exchange from ripples to meanders. Wat. Resour. Res. 46, W12539 (2010).

    Article  Google Scholar 

  45. Stonedahl, S. H., Harvey, J. W., Detty, J., Aubeneau, A. & Packman, A. I. Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model. Wat. Resour. Res. 48, W10513 (2012).

    Article  Google Scholar 

  46. Stonedahl, S. H., Harvey, J. W. & Packman, A. I. Interactions between hyporheic flow produced by stream meanders, bars, and dunes. Wat. Resour. Res. 49, 5450–5461 (2013).

    Article  Google Scholar 

  47. Vittal, N., Ranga Raju, K. G. & Garde, R. J. Resistance of two dimensional triangular roughness. J. Hydraul. Res. 15, 19–36 (1977).

    Article  Google Scholar 

  48. Fehlman, H. M. Resistance Components and Velocity Distributions of Open Channel Flows Over Bedforms Master’s thesis, Colorado State Univ. (1985).

  49. Shen, H., Fehlman, H. & Mendoza, C. Bed form resistances in open channel flows. J. Hydraul. Eng. 116, 799–815 (1990).

    Article  Google Scholar 

  50. Wörman, A., Packman, A. I., Marklund, L., Harvey, J. W. & Stone, S. H. Exact three-dimensional spectral solution to surface–groundwater interactions with arbitrary surface topography. Geophys. Res. Lett. 33, L07402 (2006).

    Article  Google Scholar 

  51. Boano, F., Revelli, R. & Ridolfi, L. Reduction of the hyporheic zone volume due to the stream-aquifer interaction. Geophys. Res. Lett. 35, L09401 (2008).

    Article  Google Scholar 

  52. Boano, F., Revelli, R. & Ridolfi, L. Quantifying the impact of groundwater discharge on the surface–subsurface exchange. Hydrol. Process. 23, 2108–2116 (2009).

    Article  Google Scholar 

  53. Zheng, C. & Bennett, G. D. Applied Contaminant Transport Modeling (Wiley-Interscience, 2002).

    Google Scholar 

  54. Seaber, P. R., Kapinos, F. P. & Knapp, G. L. Hydrologic Unit Maps: US Geological Survey 63 (US Geological Survey, 1987); http://pubs.usgs.gov/wsp/wsp2294/pdf/wsp_2294.pdf

    Google Scholar 

  55. Wolock, D. M. Hydrologic Landscape Regions of the United States (US Geological Survey, 2003); http://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#Metadata_Reference_Information

    Book  Google Scholar 

  56. Wolock, D. M., Winter, T. C. & McMahon, G. Delineation and evaluation of hydrologic-landscape regions in the United States using geographic information system tools and multivariate statistical analyses. Environ. Manage. 34, S71–S88 (2004).

    Article  Google Scholar 

  57. Wolock, D. M. Base-Flow Index Grid for the Conterminous United States (US Geological Survey, 2003); http://water.usgs.gov/lookup/getspatial?bfi48grd

    Book  Google Scholar 

  58. National Rivers and Streams Assessment (2008–2009) 110 (US Environmental Protection Agency, 2013); http://water.epa.gov/type/rsl/monitoring/riverssurvey/upload/NRSA0809_Report_Final_508Compliant_130228.pdf

  59. The Wadeable Streams Assessment: A Collaborative Survey of the Nation’s Streams 113 (US Environmental Protection Agency, 2006); http://water.epa.gov/type/rsl/monitoring/streamsurvey/upload/2007_5_16_streamsurvey_WSA_Assessment_May2007.pdf

  60. Wilkerson, G. V. et al. Continental-scale relationship between bankfull width and drainage area for single-thread alluvial channels. Wat. Resour. Res. 50, 919–936 (2014).

    Article  Google Scholar 

  61. Bieger, K., Rathjens, H., Allen, P. M. & Arnold, J. G. Development and evaluation of bankfull hydraulic geometry relationships for the physiographic regions of the United States. J. Am. Wat. Resour. Assoc. 51, 842–858 (2015).

    Article  Google Scholar 

  62. Shepherd, R. G. Correlations of permeability and grain size. Ground Wat. 27, 633–638 (1989).

    Article  Google Scholar 

  63. Lu, C., Chen, X., Cheng, C., Ou, G. & Shu, L. Horizontal hydraulic conductivity of shallow streambed sediments and comparison with the grain-size analysis results. Hydrol. Process. 26, 454–466 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted while J.D.G.-V. held a postdoctoral associateship at the US Geological Survey. The work of J.W.H. and J.D.G.-V. is supported by USGS WAU and NWQP Programs and by the John Wesley Powell Center for Analysis and Synthesis: River corridor hot spots for biogeochemical processing—a continental-scale synthesis. M.B.C. is supported by a National Science Foundation CAREER grant (EAR-0955750). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

J.D.G.-V. and J.W.H. conceived the study and wrote the paper with contributions from M.B.C. and B.K. The data analysis, compilation and modelling were performed by J.D.G.-V. and B.K. All authors interpreted the results.

Corresponding author

Correspondence to Jesus D. Gomez-Velez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 14077 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Velez, J., Harvey, J., Cardenas, M. et al. Denitrification in the Mississippi River network controlled by flow through river bedforms. Nature Geosci 8, 941–945 (2015). https://doi.org/10.1038/ngeo2567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2567

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology