Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents

Abstract

The stable continents have a puzzling structure. Recent seismological studies have revealed a marked drop in seismic velocity at middle-lithosphere depths, but a generally small velocity drop at the lithosphere-asthenosphere boundary. The mid-lithosphere discontinuity has previously been attributed to changes in composition and/or crystal alignment (anisotropy) caused by metasomatic alteration, as well as to partial melting and/or accretion of intruded materials that occurred after the formation of the continents. We show that these models cannot easily explain the global presence of a large seismic velocity drop in the middle lithosphere and a small velocity change at the lithosphere-asthenosphere boundary. These models are also difficult to reconcile with long-term continental stability and, in particular, observations of nearly depth-invariant ages of rocks in the continental lithosphere that do not support the notion of late alteration events. Instead, we propose an elastically accommodated grain-boundary sliding model that predicts a substantial velocity drop at the mid-lithosphere discontinuity and a weak seismic signal at the lithosphere-asthenosphere boundary, as observed, without invoking late-stage modifications to the lithosphere. In this model, the mid-lithosphere discontinuity is a general feature of the stable continents, the precise depth of which depends primarily on temperature and water content. Consequently, the depth of the mid-lithosphere discontinuity may provide clues to the evolution of continents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seismological observations of the MLD.
Figure 2: Schematic illustration of plausible evolution of continents that might cause the MLD signature.
Figure 3: Layered anisotropic structures and the corresponding seismic wave velocity-depth profiles.
Figure 4: Characteristics of the MLD based on the EAGBS model.

Similar content being viewed by others

References

  1. Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43, RG1001 (2005).

    Article  Google Scholar 

  2. Windley, B. F. The Evolving of Continents 3rd edn (John Wiley & Sons, 1995).

    Google Scholar 

  3. Artemieva, I. M. Global 1°x1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution. Tectonophysics 416, 245–277 (2006).

    Article  Google Scholar 

  4. Gung, Y., Romanowicz, B. & Panning, M. Global anisotropy and the thickness of continents. Nature 422, 707–711 (2003).

    Article  Google Scholar 

  5. Thybo, H. & Perchuc, E. The seismic 8° discontinuity and partial melting in continental mantle. Science 275, 1626–1629 (1997).

    Article  Google Scholar 

  6. Thybo, H. The heterogeneous upper mantle low velocity zone. Tectonophysics 416, 53–79 (2006).

    Article  Google Scholar 

  7. Fischer, K. M., Ford, H. A., Abt, D. L. & Rychert, C. A. The lithosphere–asthenosphere boundary. Ann. Rev. Earth Planet. Sci. 38, 551–575 (2010).

    Article  Google Scholar 

  8. Kind, R., Yuan, X. & Kumar, P. Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics 536/537, 25–43 (2012).

    Article  Google Scholar 

  9. Yuan, H. & Romanowicz, B. Lithospheric layering in the North American craton. Nature 466, 1063–1066 (2010).

    Article  Google Scholar 

  10. Sodoudi, F. et al. Seismic evidence for stratification in composition and anisotropic fabric within the thick lithosphere of Kalahari Craton. Geochem. Geophys. Geosyst. 14, 5393–5412 (2013).

    Article  Google Scholar 

  11. Wölbern, I., Rümpker, G., Link, K. & Sodoudi, F. Melt infiltration of the lower lithosphere beneath the Tanzania craton and the Albertine rift inferred from S recever functions. Geochem. Geophys. Geosyst. 13, Q0AK08 (2012).

    Article  Google Scholar 

  12. Yuan, H., Romanowicz, B., Fischer, K. M. & Abt, D. 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophys. J. Int. 184, 1237–1260 (2011).

    Article  Google Scholar 

  13. Wittlinger, G. & Farra, V. Converted waves reveal a thick and layered tectosphere beneath the Kalahari super-craton. Earth Planet. Sci. Lett. 254, 404–415 (2007).

    Article  Google Scholar 

  14. Zener, C. Theory of the elasticity of polycrystals with viscous grain boundaries. Phys. Rev. 60, 906–908 (1941).

    Article  Google Scholar 

  15. Kê, T. S. Experimental evidence of the viscous behavior of grain boundaries in metals. Phys. Rev. 71, 533–546 (1947).

    Article  Google Scholar 

  16. Lee, L. C., Morris, S. J. S. & Wilkening, J. Stress concentrations, diffusionally accommodated grain boundary sliding and the viscoelasticity of polycrystals. Proc. R. Soc. A467, 1624–1644 (2011).

    Article  Google Scholar 

  17. Karato, S. On the origin of the asthenosphere. Earth Planet. Sci. Lett. 321/322, 95–103 (2012).

    Article  Google Scholar 

  18. Levander, A. & Miller, M. S. Evolutionary aspects of lithosphere discontinuity structure in the western U. S. Geochem. Geophys. Geosyst. 13, Q0AK07 (2012).

    Article  Google Scholar 

  19. Lekić, V. & Fischer, K. M. Contrasting lithospheric signatures across the western United States. Earth Planet. Sci. Lett. 402, 90–98 (2014).

    Article  Google Scholar 

  20. Abt, D. L. et al. North American lithosphere discontinuity structure imaged by Ps and Sp receiver functions. J. Geophys. Res. 115, B09301 (2010).

    Google Scholar 

  21. Ford, H. A., Fischer, K. M., Abt, D. L., Rychert, C. A. & Elkins-Tanton, L. T. The lithosphere-asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth Planet. Sci. Lett. 300, 299–310 (2010).

    Article  Google Scholar 

  22. Green, D. H., Hibberson, W. O., Kovács, I. & Rosenthal, A. Water and its influence on the lithosphere-asthenosphere boundary. Nature 467, 448–452 (2010).

    Article  Google Scholar 

  23. Hirschmann, M. M. Water, melting, and the deep Earth H2O cycle. Ann. Rev.Earth Planet. Sci. 34, 629–653 (2006).

    Article  Google Scholar 

  24. Falloon, T. J. & Green, D. H. The solidus of carbonated, fertile peridotite. Earth Planet. Sci. Lett. 94, 364–370 (1989).

    Article  Google Scholar 

  25. Lee, C-T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annual Rev. Earth Planet. Sci. 39, 59–90 (2011).

    Article  Google Scholar 

  26. Behn, M. D. & Kelemen, P. B. Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J. Geophy. Res. 111, B11207 (2006).

    Article  Google Scholar 

  27. Lee, C-T. A. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle. J. Geophys. Res. 108, 2441 (2003).

    Google Scholar 

  28. Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. 111, B05401 (2006).

    Article  Google Scholar 

  29. Matsukage, K. N., Nishihara, Y. & Karato, S. Seismological signature of chemical evolution of Earth's upper mantle. J. Geophys. Res. 110, B12305 (2005).

    Article  Google Scholar 

  30. Hacker, B. R., Abers, G. A. & Peacock, S. M. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res 108, 2029 (2003).

    Google Scholar 

  31. Pearson, D. G., Canil, D. & Shirey, S. B. in Treatise on Geochemistry Vol. 2 (eds Carlson, R. W. et al.) 171–275 (Elsevier, 2003).

    Book  Google Scholar 

  32. Ben Ismail, W., Barroul, G. & Mainprice, D. The Kaapvaal craton seismic anisotropy: petrological analyses of upper mantle kimberlite nodules. Geophys. Res. Lett. 28, 2497–2500 (2001).

    Article  Google Scholar 

  33. Jackson, I. & Faul, U. H. Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Int. 183, 151–163 (2010).

    Article  Google Scholar 

  34. Jackson, I., Faul, U. H. & Skelton, R. Elastically accommodated grain-boundary sliding: New insights from experiment and modeling. Phys. Earth Planet. Int. 228, 203–210 (2014).

    Article  Google Scholar 

  35. Sundberg, M. & Cooper, R. F. A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep: Correlating creep and attenuation responses for materials with a fine grain size. Philos. Mag. 90, 2817–2840 (2010).

    Article  Google Scholar 

  36. Olugboji, T. M., Karato, S. & Park, J. Structure of the oceanic lithosphere-asthenosphere boundary: Mineral-physics modeling and seismological signatures. Geochem. Geophys. Geosyst. 14, 880–901 (2013).

    Article  Google Scholar 

  37. Karato, S. in Water in Nominally Anhydrous Minerals (eds Keppler, H. & Smyth, J. R.) 343–375 (Mineralogical Society of America, 2006).

    Book  Google Scholar 

  38. McCarthy, C., Takei, Y. & Hiraga, T. Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials. J. Geophys. Res. 116, B09207 (2011).

    Google Scholar 

  39. Peslier, A. H., Woodland, A. B., Bell, D. R. & Lazarov, M. Olivine water contents in the continental lithosphere and the longivity of cratons. Nature 467, 78–83 (2010).

    Article  Google Scholar 

  40. Selway, K., Yi, J. & Karato, S. Water content for the Tanzanian lithosphere from magnetotelluric data: Implications for cratonic growth and stability. Earth Planet. Sci. Lett. 388, 175–186 (2014).

    Article  Google Scholar 

  41. Karato, S. Rheology of the deep upper mantle and its implications for the preservation of the continental roots: A review. Tectonophysics 481, 82–98 (2010).

    Article  Google Scholar 

  42. Meqbel, N. M., Egbert, G., Wannamaker, P. E., Kelbert, A. & Schultz, A. Deep electrical resistivity structure of the northwestern U. S. derived from 3-D inversion of USArray magnetotelluric data. Earth Planet. Sci. Lett. 402, 290–304 (2014).

    Article  Google Scholar 

  43. Minster, J. B. & Anderson, D. L. A model of dislocation-controlled rheology for the mantle. Phil. Trans. R. Soc. Lond. A 299, 319–356 (1981).

    Article  Google Scholar 

  44. Mitchell, B. J. Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Rev. Geophys. 33, 441–462 (1995).

    Article  Google Scholar 

  45. Karato, S. Deformation of Earth Materials: Introduction to the Rheology of the Solid Earth (Cambridge Univ. Press, 2008).

    Book  Google Scholar 

  46. Karato, S. & Wang, D. in Physics and Chemistry of the Deep Earth (ed Karato, S.) 145–182 (Wiley-Blackwell, 2013).

    Book  Google Scholar 

  47. Snyder, D. B. Stacked uppermost mantle layers within the Slave craton of NW Canada defined by anisotropic seismic discontinuities. Tectonics 27, TC4006 (2008).

    Article  Google Scholar 

  48. Kumar, P., Kind, R., Yuan, X. & Mechie, J. USArray receiver function images of the LAB. Seismol. Res. Lett. 83, 486–491 (2012).

    Article  Google Scholar 

  49. Olsson, S., Roberts, R. G. & BöÐvarsson, R. Analysis of waves converted from S to P in the upper mantle beneath the Baltic Shield. Earth Planet. Sci. Lett. 257, 37–46 (2007).

    Article  Google Scholar 

  50. Snyder, D. B., Berman, R. G., Kendall, J-M. & Sanborn-Barrie, M. Seismic anisotropy and mantle structure of the Rae craton, central Canada, from joint interpretation of SKS splitting and receiver functions. Precamb. Res. 232, 189–208 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This study is partly supported by the grants to S.K. and J.P. from the National Science Foundation. We thank I. Artemieva for providing us with the data on the temperature and age distribution in the continents, and R. Kind and F. Sodoudi for providing the data on the locations and the depths of lithospheric discontinuities in the South African Craton. Discussions with R. Dasgupta, H. Ford, I. Jackson, M. Long, S. Morris, K. Selway and S. Solomatov were helpful in preparing this paper. We thank U. Faul who provided critical comments on the earlier version of this paper.

Author information

Authors and Affiliations

Authors

Contributions

S.K. planned and coordinated the whole project and wrote a majority of the paper. T.O. compiled the data on seismological observations and geotherms and prepared Fig. 1 (and Supplementary Information I), and evaluated the visibility of EAGBS in the receiver function observations. J.P. evaluated the seismological observations and assessed the visibility of velocity reduction caused by EAGBS in the receiver function observations (Supplementary Information III). All authors participated in the discussion.

Corresponding author

Correspondence to Shun-ichiro Karato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 1396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karato, Si., Olugboji, T. & Park, J. Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nature Geosci 8, 509–514 (2015). https://doi.org/10.1038/ngeo2462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2462

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing