Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitatively predictable control of Drosophila transcriptional enhancers in vivo with engineered transcription factors

Abstract

Genes are regulated by transcription factors that bind to regions of genomic DNA called enhancers. Considerable effort is focused on identifying transcription factor binding sites, with the goal of predicting gene expression from DNA sequence. Despite this effort, general, predictive models of enhancer function are currently lacking. Here we combine quantitative models of enhancer function with manipulations using engineered transcription factors to examine the extent to which enhancer function can be controlled in a quantitatively predictable manner. Our models, which incorporate few free parameters, can accurately predict the contributions of ectopic transcription factor inputs. These models allow the predictable 'tuning' of enhancers, providing a framework for the quantitative control of enhancers with engineered transcription factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A logistic model predicts the observed graded repression of the eve 3 + 7 enhancer.
Figure 2: A logistic model predicts the outcome of the balance between activation and repression at the eve 4 + 6 enhancer.
Figure 3: TALEAs can overcome ventral repression of the rho enhancer.
Figure 4: A balance of transcriptional activators and repressors in the eve 2 enhancer.

Similar content being viewed by others

References

  1. Levo, M. & Segal, E. In pursuit of design principles of regulatory sequences. Nat. Rev. Genet. 15, 453–468 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Crocker, J., Tamori, Y. & Erives, A. Evolution acts on enhancer organization to fine-tune gradient threshold readouts. PLoS Biol. 6, e263 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Erives, A. & Levine, M. Coordinate enhancers share common organizational features in the Drosophila genome. Proc. Natl. Acad. Sci. USA 101, 3851–3856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Panne, D., Maniatis, T. & Harrison, S.C. An atomic model of the interferon-β enhanceosome. Cell 129, 1111–1123 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Panne, D. The enhanceosome. Curr. Opin. Struct. Biol. 18, 236–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Spitz, F. & Furlong, E.E.M. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Kulkarni, M.M. & Arnosti, D.N. Information display by transcriptional enhancers. Development 130, 6569–6575 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Lusk, R.W. & Eisen, M.B. Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in Drosophila enhancers. PLoS Genet. 6, e1000829 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Swanson, C.I., Evans, N.C. & Barolo, S. Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Dev. Cell 18, 359–370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B Biol. Sci. 237, 37–72 (1952).

    Article  Google Scholar 

  12. Jaeger, J. et al. Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–371 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Janssens, H. et al. Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nat. Genet. 38, 1159–1165 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, A.-R. et al. Rearrangements of 2.5 kilobases of noncoding DNA from the Drosophila even-skipped locus define predictive rules of genomic cis-regulatory logic. PLoS Genet. 9, e1003243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ay, A. & Arnosti, D.N. Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit. Rev. Biochem. Mol. Biol. 46, 137–151 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Samee, M.A.H. & Sinha, S. Quantitative modeling of a gene's expression from its intergenic sequence. PLoS Comput. Biol. 10, e1003467 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Crocker, J. et al. Low affinity binding site clusters confer Hox specificity and regulatory robustness. Cell 160, 191–203 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Wong, D. et al. Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. Genome Biol. 12, R70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuo, Z. & Stormo, G.D. High-resolution specificity from DNA sequencing highlights alternative modes of Lac repressor binding. Genetics 198, 1329–1343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Glass, L. & Kauffman, S.A. The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Reinitz, J., Mjolsness, E. & Sharp, D.H. Model for cooperative control of positional information in Drosophila by bicoid and maternal hunchback. J. Exp. Zool. 271, 47–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Reinitz, J. & Sharp, D.H. Mechanism of eve stripe formation. Mech. Dev. 49, 133–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Ilsley, G.R., Fisher, J., Apweiler, R., De Pace, A.H. & Luscombe, N.M. Cellular resolution models for even skipped regulation in the entire Drosophila embryo. eLife 2, e00522 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Staller, M.V. et al. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 112, 785–790 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crocker, J. & Stern, D.L. TALE-mediated modulation of transcriptional enhancers in vivo. Nat. Methods 10, 762–767 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tracey, W.D. Jr., Ning, X., Klingler, M., Kramer, S.G. & Gergen, J.P. Quantitative analysis of gene function in the Drosophila embryo. Genetics 154, 273–284 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujioka, M., Emi-Sarker, Y., Yusibova, G.L., Goto, T. & Jaynes, J.B. Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. Development 126, 2527–2538 (1999).

    CAS  PubMed  Google Scholar 

  29. Struffi, P., Corado, M., Kulkarni, M. & Arnosti, D.N. Quantitative contributions of CtBP-dependent and -independent repression activities of Knirps. Development 131, 2419–2429 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Langeland, J.A., Attai, S.F., Vorwerk, K. & Carroll, S.B. Positioning adjacent pair-rule stripes in the posterior Drosophila embryo. Development 120, 2945–2955 (1994).

    CAS  PubMed  Google Scholar 

  31. Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Clyde, D.E. et al. A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature 426, 849–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Small, S., Blair, A. & Levine, M. Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo. Dev. Biol. 175, 314–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Morán, E. & Jiménez, G. The tailless nuclear receptor acts as a dedicated repressor in the early Drosophila embryo. Mol. Cell. Biol. 26, 3446–3454 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Surkova, S. et al. Quantitative imaging of gene expression in Drosophila embryos. Cold Spring Harb. Protoc. 2013, 488–497 (2013).

    PubMed  Google Scholar 

  36. Surkova, S. et al. Characterization of the Drosophila segment determination morphome. Dev. Biol. 313, 844–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Janssens, H. et al. Lack of tailless leads to an increase in expression variability in Drosophila embryos. Dev. Biol. 377, 305–317 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang, J. & Levine, M. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell 72, 741–752 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Zinzen, R.P., Senger, K., Levine, M. & Papatsenko, D. Computational models for neurogenic gene expression in the Drosophila embryo. Curr. Biol. 16, 1358–1365 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Ip, Y.T., Park, R.E., Kosman, D., Bier, E. & Levine, M. The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev. 6, 1728–1739 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Crocker, J., Potter, N. & Erives, A. Dynamic evolution of precise regulatory encodings creates the clustered site signature of enhancers. Nat. Commun. 1, 99 (2010).

    Article  PubMed  CAS  Google Scholar 

  42. Barolo, S. & Levine, M. hairy mediates dominant repression in the Drosophila embryo. EMBO J. 16, 2883–2891 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Davidson, E.H. The Regulatory Genome: Gene Regulatory Networks in Development And Evolution (Academic Press, 2006).

  44. Arnosti, D.N., Barolo, S., Levine, M. & Small, S. The eve stripe 2 enhancer employs multiple modes of transcriptional synergy. Development 122, 205–214 (1996).

    CAS  PubMed  Google Scholar 

  45. Ludwig, M.Z., Bergman, C., Patel, N.H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403, 564–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Ludwig, M.Z. et al. Functional evolution of a cis-regulatory module. PLoS Biol. 3, e93 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rastegar, S. et al. The words of the regulatory code are arranged in a variable manner in highly conserved enhancers. Dev. Biol. 318, 366–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Jin, H. et al. Genome-wide screens for in vivo Tinman binding sites identify cardiac enhancers with diverse functional architectures. PLoS Genet. 9, e1003195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown, C.D., Johnson, D.S. & Sidow, A. Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science 317, 1557–1560 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Menoret, D. et al. Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization. Genome Biol. 14, R86 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hare, E.E., Peterson, B.K., Iyer, V.N., Meier, R. & Eisen, M.B. Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet. 4, e1000106 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Junion, G. et al. A transcription factor collective defines cardiac cell fate and reflects lineage history. Cell 148, 473–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Arnosti, D.N. & Kulkarni, M.M. Transcriptional enhancers: intelligent enhanceosomes or flexible billboards? J. Cell. Biochem. 94, 890–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Arnosti, D.N., Gray, S., Barolo, S., Zhou, J. & Levine, M. The gap protein knirps mediates both quenching and direct repression in the Drosophila embryo. EMBO J. 15, 3659–3666 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Shalek, A.K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Patel, A.P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503–509 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fowlkes, C.C. et al. A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell 133, 364–374 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Levine, J. Bothma, S. Barolo, J. Jaynes, N. Luscombe, the entire Stern laboratory and the members of the Janelia Transcriptional Imaging Consortium for discussions and advice throughout the project. We thank C. Standley, J. Cande, E. Preger–Ben Noon, J. Shaevitz and especially R. Mann for critically reviewing our manuscript. We thank D. Papatsenko and H. Janssens for supplying the dorsoventral rho and tll mutant data, respectively.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and G.R.I. conceived the study, designed and executed the experiments, and analyzed the data, with mentorship from D.L.S. J.C., G.R.I. and D.L.S. wrote the manuscript.

Corresponding authors

Correspondence to Justin Crocker or Garth R Ilsley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 eve stripe 3+7 TALE-GFP does not alter eve expression, and different levels of TALER expression do not alter the effect of TALER.

(ad) Stage 5 embryos stained for Eve protein in either a wild-type background (a) or carrying a single ubiquitous nos::GAL4 driver (b,c) or two nos::GAL4 drivers (d) and the indicated UAS::stripe 3+7 TALE. (eh) Profiles of average expression levels for the indicated genotype (n = 10 for each genotype). Bounding areas around experimental data indicate 1 s.d. AU, arbitrary units of fluorescence intensity.

Supplementary Figure 2 The logistic eve 4+6 model accurately predicts expression in different genetic backgrounds.

(ac) Virtual Embryo predictions from the eve 4+6 model, for eve 4+6 expression in the indicated genetic background. The knirps (kni) heterozygote prediction has knirps at 75% of normal levels, which implies compensatory regulation; in the homozygote, knirps is not expressed. (df) Stage 5 embryos stained for Even-skipped protein (Eve) in either a wild-type background (d) or the indicated genetic background (e,f) with the third Eve stripe labeled in each panel. (gi) Larval cuticle preparations for the indicated genomic backgrounds, with the A1 segment labeled in each panel. Red brackets highlight the modified larval segments.

Supplementary Figure 3 The logistic eve 4+6 model accurately predicts expression patterns resulting from input misexpression.

(a) Ventral view of the even-skipped (eve) expression pattern in a wild-type stage 5 embryo. (b) Ventral view of the Virtual Embryo eve 4+6 model prediction. (c) Expression pattern of an embryo carrying ectopic knirps (kni) expression driven from a snail (sna) enhancer. (d) Virtual embryo with ectopic knirps expression. (e,g) Ventral views showing stripe-specific changes in expression resulting from ectopic knirps expression, in embryos carrying one (e) or two (g) copies of the sna::kni transgene. (f,h) Ventral view of the eve 4+6 model predictions with ectopic expression of knirps in the snail domain (see also e and g). In situ images are reproduced from Figure 1 of Clyde et al.32.

Supplementary Figure 4 Hairy and Krüppel repressive domains display quantitatively different repressive strength.

(ad) Stage 5 embryos stained for Eve protein in either a wild-type background (a) or carrying a ubiquitous nos::GAL4 driver and the indicated UAS::stripe 3+7–TALE (bd). (eh) Profiles of average expression levels for the indicated genotype (n = 10 for each genotype). In all plots, the solid blue line denotes model predictions; black, green, red and orange lines denote wild-type, enhancer-GFP, enhancer-TALER-hairy and enhancer-TALER-Krüppel constructs, respectively. Bounding areas around experimental data indicate 1 s.d. AU, arbitrary units of fluorescence intensity.

Supplementary Figure 5 The logistic eve 4+6 model accurately predicts expression in tailless (tll)-mutant embryos.

(a,b) Predicted expression levels for the eve 3+7 (pink) and eve 4+6 (blue) enhancers in wild-type (a) or tailless-mutant (b) embryos, based on previously published primary expression data37. Dashed lines indicate actual Even-skipped protein (Eve) expression levels for each background. (c,d) Stage 5 embryos stained for Eve protein in either a wild-type background (c) or the tailless-mutant background (d), with the third Eve stripe labeled in each panel. (e,f) Larval cuticle preparations for the indicated genomic backgrounds, with the A1 segment labeled in each panel.

Supplementary Figure 6 Cooperative interactions between Dorsal (Dl) and Twist (Twi) are combined with snail (sna) in a linear manner.

(a) A logistic model using linear combinations of previously published expression data for the known regulators of rhomboid (rho)39, indicating the model output (dashed black line), the regulatory inputs (blue, green and orange) and native rhomboid enhancer expression (pink). The cyan dashed line indicates the model prediction for three TALEAs. (b) Cooperativity between Dorsal and Twist is modeled by the addition of a nonlinear term to the model. Note the differences in the model predictions in a and b in the dorsal and ventral regions with the addition of TALEAs (blue dashed lines).

Supplementary Figure 7 The rhomboid (rho) enhancer model including Dorsal-Twist cooperativity accurately predicts expression patterns resulting from binding site modifications.

(ad) rhomboid model predictions in wild-type (a), snail (sna)-deficient (b), twist-deficient (c) and dorsal-deficient backgrounds (d). (eh) Lateral views of rhomboid enhancer expression with the indicated binding site modifications; see also Figure 4 of Ip et al.40.

Supplementary Figure 8 A balance of transcriptional activators and repressors at the rhomboid enhancer.

(a) Schematic of the rhomboid enhancer region, with known binding sites indicated40. (bd) Stage 5 embryos from either wild-type rho-lacZ reporter (b), a reporter carrying a mutation in the Twist site of rho-lacZ (c) or the Twist-mutant rho-lacZ reporter together with UAS::rho-TALEA-VP64 (d) stained for lacZ (β-gal) RNA.

Supplementary Figure 9 TALEAs can drive increased activation of native enhancers in multiple developmental contexts.

(a,b) In the neuroectoderm, stage 5 embryos display increased expression of vndNEE-lacZ when targeted with vnd-enhancer-TALEA-VP64 by nos::GAL4 (b) as compared with a wild-type background (a). (ce) In the wing imaginal disc, a TALEA increases enhancer expression. (c) A schematic of Decapentaplegic (dpp) regulation of optomotor blind (omb) in the larval imaginal wing disc. (d,e) Larval imaginal wing discs show stronger expression of omb-lacZ transgenes when targeted with omb-enhancer-TALEA-VP64 by Act5c::GAL4 (e) as compared with wild-type background (d).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Note. (PDF 4323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crocker, J., Ilsley, G. & Stern, D. Quantitatively predictable control of Drosophila transcriptional enhancers in vivo with engineered transcription factors. Nat Genet 48, 292–298 (2016). https://doi.org/10.1038/ng.3509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing