Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

An engineered eukaryotic protein glycosylation pathway in Escherichia coli

Abstract

We performed bottom-up engineering of a synthetic pathway in Escherichia coli for the production of eukaryotic trimannosyl chitobiose glycans and the transfer of these glycans to specific asparagine residues in target proteins. The glycan biosynthesis was enabled by four eukaryotic glycosyltransferases, including the yeast uridine diphosphate-N-acetylglucosamine transferases Alg13 and Alg14 and the mannosyltransferases Alg1 and Alg2. By including the bacterial oligosaccharyltransferase PglB from Campylobacter jejuni, we successfully transferred glycans to eukaryotic proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineering eukaryotic glycan biosynthesis in E. coli.
Figure 2: Characterization of LLOs produced by glycoengineered E. coli.
Figure 3: Transfer of eukaryotic glycans to target proteins in E. coli.

Similar content being viewed by others

References

  1. Helenius, A. & Aebi, M. Science 291, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  2. Szymanski, C.M., Yao, R., Ewing, C.P., Trust, T.J. & Guerry, P. Mol. Microbiol. 32, 1022–1030 (1999).

    Article  CAS  Google Scholar 

  3. Wacker, M. et al. Science 298, 1790–1793 (2002).

    Article  CAS  Google Scholar 

  4. Kowarik, M. et al. EMBO J. 25, 1957–1966 (2006).

    Article  CAS  Google Scholar 

  5. Schwarz, F. et al. Glycobiology 21, 45–54 (2011).

    Article  CAS  Google Scholar 

  6. Ielmini, M.V. & Feldman, M.F. Glycobiology 21, 734–742 (2011).

    Article  CAS  Google Scholar 

  7. Weerapana, E. & Imperiali, B. Glycobiology 16, 91R–101R (2006).

    Article  CAS  Google Scholar 

  8. Feldman, M.F. et al. Proc. Natl. Acad. Sci. USA 102, 3016–3021 (2005).

    Article  CAS  Google Scholar 

  9. Ihssen, J. et al. Microb. Cell Fact. 9, 61 (2010).

    Article  Google Scholar 

  10. Schwarz, F. et al. Nat. Chem. Biol. 6, 264–266 (2010).

    Article  CAS  Google Scholar 

  11. Pandhal, J. & Wright, P.C. Biotechnol. Lett. 32, 1189–1198 (2010).

    Article  CAS  Google Scholar 

  12. Van Patten, S.M. et al. Glycobiology 17, 467–478 (2007).

    Article  CAS  Google Scholar 

  13. O'Reilly, M.K., Zhang, G. & Imperiali, B. Biochemistry 45, 9593–9603 (2006).

    Article  CAS  Google Scholar 

  14. Couto, J.R., Huffaker, T.C. & Robbins, P.W. J. Biol. Chem. 259, 378–382 (1984).

    CAS  PubMed  Google Scholar 

  15. Wang, X., Weldeghiorghis, T., Zhang, G., Imperiali, B. & Prestegard, J.H. Structure 16, 965–975 (2008).

    Article  CAS  Google Scholar 

  16. Ilg, K., Yavuz, E., Maffioli, C., Priem, B. & Aebi, M. Glycobiology 20, 1289–1297 (2010).

    Article  CAS  Google Scholar 

  17. Fisher, A.C. et al. Appl. Environ. Microbiol. 77, 871–881 (2011).

    Article  CAS  Google Scholar 

  18. Alaimo, C. et al. EMBO J. 25, 967–976 (2006).

    Article  CAS  Google Scholar 

  19. Cipollo, J.F., Trimble, R.B., Chi, J.H., Yan, Q. & Dean, N. J. Biol. Chem. 276, 21828–21840 (2001).

    Article  CAS  Google Scholar 

  20. Lizak, C., Gerber, S., Numao, S., Aebi, M. & Locher, K.P. Nature 474, 350–355 (2011).

    Article  CAS  Google Scholar 

  21. Liu, X. et al. Anal. Chem. 78, 6081–6087 (2006).

    Article  CAS  Google Scholar 

  22. Kowarik, M. et al. Science 314, 1148–1150 (2006).

    Article  CAS  Google Scholar 

  23. Çelik, E., Fisher, A.C., Guarino, C., Mansell, T.J. & DeLisa, M.P. Protein Sci. 19, 2006–2013 (2010).

    Article  Google Scholar 

  24. Dürr, C., Nothaft, H., Lizak, C., Glockshuber, R. & Aebi, M. Glycobiology 20, 1366–1372 (2010).

    Article  Google Scholar 

  25. Nasab, F.P., Schulz, B.L., Gamarro, F., Parodi, A.J. & Aebi, M. Mol. Biol. Cell 19, 3758–3768 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Imperiali (Massachusetts Institute of Technology) for plasmid pBAD(ALG2)-DEST49, G. O'Toole (Dartmouth College) for plasmid pMQ70, T. Mansell for helpful discussions regarding RNaseA glycosylation, C. Hong for helpful discussions regarding glycan synthesis and individuals from the Functional Genomic Center Zürich for input and instrument support. This work was supported by the National Science Foundation Career Award CBET-0449080 (to M.P.D.), the New York State Office of Science, Technology and Academic Research Distinguished Faculty Award (to M.P.D.), the National Institutes of Health Small Business Innovation Research grants R43 GM087766 and R43 GM086965 (to A.C.F.), the National Institutes of Health National Center for Research Resources grant 1 P41 RR018502-01 (to the Complex Carbohydrate Research Center) and a graduate fellowship from LASPAU and the Universidad Antonio Nariño (to J.D.V.-R.).

Author information

Authors and Affiliations

Authors

Contributions

J.D.V.-R. and A.C.F. designed research, performed research, analyzed data and wrote the paper. J.H.M. designed research and performed research. Y.-Y.F. performed MS analysis and analyzed data. C.A.R. and K.C. performed research. C.H. and P.A. performed NMR analysis and analyzed data. M.A. designed research and analyzed data. M.P.D. designed research, analyzed data and wrote the paper.

Corresponding author

Correspondence to Matthew P DeLisa.

Ethics declarations

Competing interests

A.C.F., J.H.M. and C.A.R. are employees of Glycobia, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 11274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valderrama-Rincon, J., Fisher, A., Merritt, J. et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 8, 434–436 (2012). https://doi.org/10.1038/nchembio.921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.921

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research